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Chapter 1

Imaging Geometry

1.1 Introduction

In' the first chapter of this book we will learn about imaging geometry. We will discuss
various transformations which will be used in many problems in Computer Vision. These
transformations are also used in Computer Graphics. We will learn about coordinate systems
and how to relate one coordinate system with another coordinate system. We will discuss
translation, rotation, scaling, perspective transformation, camera modeling, and camera cal-
ibration. These transformations will help us to know the location and orientation of the
object after it is translated by some amount, rotated around a given axis, and scaled by
some factor. We will derive a matrix for each of these transformations.

The world we live in is three dimensional, that is any point in space can be specified by
three coordinates (X,Y, 7). The image is a 2-D plane, so we need two coordinates (z,y)
to represent a point in the image. One dimension is lost in the projection process. One
of the important goals in Computer Vision is to recover this lost dimension. The methods
for recovering 3-D information from 2-D images are called shape from ‘X’ where ‘X’ can be
stereo, motion, shading, texture, etc. We will discuss these methods in great detail in this
book. However, in this chapter we will focus on the derivation of the camera matrix and
camera calibration.

1.2 Translation and Scaling

Consider a point on an object with coordinates (X1,Y1,71). Assume that the object is
translated by dx, dy, and dz respectively in the X, Y, and Z directions. The new coordinates
of the point are given by:

X2 =X1+dx (1.1)
Y2=Y1+dy
72=71+dz

1©1992 by Mubarak Shah.



6 CHAPTER 1. IMAGING GEOMETRY

These equations can be written in matrix form as follows:

[ X2 T 1 0 0 dzx X1
Y2 B 0 1 0 dy Y1
Z2 - 0 0 1 dz Z1 (1.4)
| 1] 000 1 1
X217 X1
Y2 Y1
79 =T 71 (1.5)
| 1] 1
1 0 0 dx]
01 0 dy|. ) ) ) ) .o
where T = 00 1 d- is called translation matrix. The inverse translation matrix is
000 1]
1 0 0 —dx
given by T = 8 (1) (1) :2?; . You can verify that 77! = T-'T = I, where [ is the
0 0O 1

identity matrix.
Similarly if the object is scaled by Sz, Sy, and Sz respectively in the X,Y, and 7
directions, the new coordinates of the point are given by:

X2=X1x S8z (1.6
Y2=Y1 x Sy
Z2=71x%x 8z

These equations can be written in matrix form as follows:

[ X2 T Sz 0 00 X1
Y2 B 0 Sy 00 Y1 (1.9)
72 o 0 0 Sz 0 Z1 |7 '
L 1] 0 0 01 1
[ X2 7 X1
Y2 Y1
79 = S 71 | (1.10)
i ] 1
(1.11)
Sz 0 0 0
where S = 8 S(y) SS 8 is called the scaling matrix. The inverse of scaling matrix is
0 0 01
1/Sz 0 00
) _ 0 1/Sy 00
1 _
given by 577 = 0 0 1/Sz 0
0 0 0 1
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1.3 Rotation

Consider a vector whose endpoint is at (X1,Y1, Z1), as shown in Figure 1.1.a. Let R denote
the length of vector, and ¢ denote the angle the vector makes with X —axis. Assume that
the vector is rotated by the angle 8 around the Z—axis in the counterclockwise direction.
The new coordinates (X2,Y 2, Z2) of the point after rotation can be computed from the old
coordinates and the angle of rotation. Consider a triangle in Figure 1.1.a whose side makes
an angle ¢ with the X —axis. Using the standard trigonometric relations we can write:

X1 = Rcos ¢ (1.12)
Y1 = Rsin ¢. (1.13)

Similarly, for the triangle in Figure 1.1.a whose side makes an angle § 4+ ¢ with the X —axis
we can write:

X2 = Rcos(6 + ¢) = Rcosfcos ¢ — Rsinfsin ¢ (1.14)
Y2 = Rsin(0 + ¢) = Rsinf cos ¢ + R cosfsin ¢. (1.15)

Substituting first two equations into the last two equations, we get:

X2=X1cosf —Y1sinb (1.16)
Y2=X1sinf +Y1cos¥h. (1.17)

These equations can also be written in matrix form as follows:

[ X2 ] cos) —sind 0 0 X1
Y2 sinf  cosf 0 0 Y1
Z2 N 0 010 Z1 (1.18)
L1 0 0 0 1 1
[ X2 X1
Y2 .z | Y1
79 = R 71 (1.19)
L1 1
cos) —sinf 0 0
= sinf  cosf 0 0 | . . i . .
where R = 0 01 0] the rotation matrix. We will use a superscript
0 0 0 1

to denote the axis of rotation, a subscript to denote the angle, and we will assume rota-

tion in the counterclockwise direction. The inverse rotation matrix is given by (Rez)_l =
cosf sinf 0 0
—sinf cosf 0 0

. The inverse rotation by f is equivalent to the rotation by —# around

0 010
0 00 1
the same axis. Therefore, (Rgz)_l = R%,. Moreover, the rotation matrix is an orthonormal

matrix, that is, (Rg)TRHZ = Rg(Rg)T = I. Therefore, the inverse of a rotation matrix is
just its transpose.
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Figure 1.1: Rotation. (a) Rotation around Z axis. (b) Two coordinate systems, UVW
superposed on XY Z. (¢) UVW rotated by # around 7 axis in the counterclockwise direction.
() UVW rotated by 8 around Y axis in the clockwise direction.
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An alternate way to derive the rotation matrix is to consider two coordinate systems
(X,Y,7) and (U, V, W) as shown in Figure 1.1.b. Assume that U, V, W are the unit vectors.
Let us rotate the UVW coordinate system around the Z-axis by an angle 6 as shown in
Figure 1.1.c. Note that the W—axis remains fixed with the Z—axis. However, the U—
and V-axes are changed. The new coordinates U’, V', and W’ can be written in terms of
the old coordinate system. The U’-vector has two components, one along X —axis, and one
along Y-axis. Note that it does not have a Z component. The new U’ vector is given by
(cosf,sin@,0). Similarly, the V'-vector is given by (—sin 8, cos8,0). Since the W vector did
not change, it remains as (0,0,1). The rotation matrix can now be formed by putting the
coordinates of the U’, V', and W’ vectors respectively in the first, second and third columns,
and (0,0,0,1) in the fourth column. The resultant matrix is exactly the same as the matrix
RZ.

This technique can be applied to derive the rotation matrix around any axis. For instance,
the rotation matrix around the Y —axis in the clockwise direction is given by (see Figure

1.1.d):

cosf 0 —sinfg 0

R 0 1 00
=7 | sinB 0 cosB 0
0 0 0 1

1.4 Perspective Transform

A simplified model of image formation is shown in Figure 1.2.a. In this so called pinhole
camera model, the lens is assumed to be a single point. The world coordinates (X, Y, 7) of a
point are transformed to the image coordinates (x,y) under perspective projection. Assume
that the origin of the coordinate system is at the lens center (shown by O in Figure 1.2.a),
and f is the focal length of the camera, the distance from the lens to the image plane. Then
using the two equivalent triangles we can write:

-y _ [

v =7 (1.20)

Since the image is always formed upside down, it is customary to use a negative sign in front
of the y in the above equation. From the above equation, the y image coordinates are given

by:
fY

= . 1.21
y 7 (1.21)
Similarly, the z—coordinates of the image are given by:
fX
= ——. 1.22
r= L (1.2)

The above equations represent the perspective transform with the origin at the lens. If the
origin is moved to the image, as shown in Figure 1.2.b, the perspective projection is defined
by the following equations:

=12 (1.23)

o (1.24)
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y
, (X,Y,Z) XY2)
f
O 1

@) (b)

Figure 1.2: Pinhole camera model. (a) Origin at the lens. (b) Origin at the image plane.

It is not possible to derive a perspective matrix similar to the translation, scaling, and
rotation matrices due to the nature of equations 1.23 and 1.24. We need to introduce an-
other transformation called homogeneous transformation. The homogeneous transformation
converts the Cartesian world coordinates (X,Y,7) into the homogeneous world coordinates
(kX,kY,kZ k). In this transformation each X,Y,Z coordinate is multiplied by a constant
k, and k is appended as the fourth component of the vector. Similarly, the inverse homo-
geneous transform converts the homogeneous image coordinates (Cy,, Ch,, Ch,, Ch,) into the
Cartesian image coordinates (g%, g—:z, g—)’:i), by dividing each of the three components with
the fourth component.

The perspective matrix can now be defined as:

10 00
01 00
P=1090 10
00 =L 1

The perspective transform, which relates the homogeneous world coordinates with the ho-
mogeneous image coordinates is defined as:

kX 10 00 kX
kY 01 00 kY
kZ | [0 0 10 kZ
kZ -1
—*+k 00 &+ 1 k
We can easily derive the Cartesian image coordinates from the above equation as:
X
=2 1.25
r=g (1.25)
Y
Y / (1.26)

=7

which are exactly the same equations as equations 1.23 and 1.24. The inverse perspective

1 0 0 0
01 00

S . p-1 _
maftrix is given by: P71 = 00 1 0
00 31
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1.5 Camera Model

The perspective transform relates the world coordinates with the image coordinates when
the camera is located at the origin of the world coordinates. However, in real life we need
to translate and rotate the camera in order to bring the object of interest in the field of
view. Therefore, the complete camera model involves several other transformations besides
the perspective transform.

In one simple model, assume that the camera is first at the origin of the world coor-
dinates, is then translated by (Xo, Yo, Zo) (matrix (&), then rotated around the Z-axis by
0 in the counterclockwise direction (matrix RZ;), rotated again around the X-axis by ¢
in the counterclockwise direction(matrix RB*;), and then translated by (ri,rs,r3) (matrix
(). In this case, the world homogeneous coordinates (W) are related to the camera image
coordinates (C}) as follows:

Cp = PCRY  RZ,GW), (1.27)
1 0 00 cosf sinf 0 0
01 00 Z —sinf cosf 0 0
where =14 o 1 o | %= 0 01 0]
00 _71 1 0 0 01
1 0 00 1 0 0 —X, 1 00 —r
0 cos¢ sing 0 01 0 =Y 01 0 —r
X _ _ _
Ry = 0 —sing cos¢ 0 , &= 00 1 —Z , U= 0 01 —r3
0 0 0 1 0 0O 1 0 0O 1

Note that the inverse transforms for the translation and rotations are used here. This
is because it is the coordinate system attached to the camera that is being translated and
rotated, rather than the object. Now, the Cartesian image coordinates can be computed
from equations:

(X — Xg)cos+ (Y —Yp)sinf —ry
—(X — Xg)sinfsin¢ + (Y — Yy)cosbsing — (Z — Zg)cosdp+ r3 + f’
—(X — Xg)sinfcos¢p+ (Y — Yy)cosbcosop+ (Z — Zy)sinp — rg
—(X — Xo)sin@sin ¢+ (Y — Yy)cosOsing — (Z — Zg)cosp+r3+ f

v=f

(1.28)

y=171

(1.29)

1.6 Camera Calibration

In the previous section we discussed the camera model, which relates the world coordinates
with the image coordinates. It was assumed that the camera focal length, rotation angles,
and translation displacements are known. An alternative method for computing the camera
model is to use the camera as a measuring device to determine the unknowns in the camera
model. This process is called camera calibration. In this method, a few points in 3-D
with known coordinates and their corresponding image coordinates are used to calibrate the
camera.

The projection of 3-D homogeneous coordinates onto the image plane (from equation
1.27) can be summarized as:
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Ch = AWy, (1.30)
Ch1 ai1np Q12 413 A14 X
Ch2 a1 G2 dA23 424 Y
— , 1.31
Ch3 a3z G32 433 434 Z ( )
Ch4 41 Q42 443 44 1

where ('} and W), respectively denote the camera and world homogeneous coordinates, and
A= PC’B{%H@G, denote the camera matrix. The aim in the camera calibration is to deter-
mine the matrix A using the known 3-D points and their corresponding image coordinates.
The matrix A is 4 x 4, which has 16 unknowns. However, C}, is not meaningful in the
image coordinates. Because the image is only two dimensional, the image coordinates can
be determined by C,, Ch,, Ch,. Therefore, we do not need to determine the third row of
the matrix, which is used for C},. Now, we are only left with 12 unknowns in the matrix A.
We will find out later in this section that we can arbitrary fix one of the 12 unknowns and
determine the remaining 11 unknowns.
As we know, the Cartesian image coordinates (x,y) are given by

Chy
x = Cr (1.32)
Ch,
y = O, (1.33)
From the equations 1.31-1.33 we get:
Chy, = anX +apY +a132 4+ a14 = Cp,x (1.34)
Chy, = anX + anY + a2 + aa = Chy (1.35)
Chy, = anX + asY + as3Z + ayq (1.36)
substituting Cy,, Ch,, and C}, in equations 1.32-1.33 and rearranging we get:
an X +aY +a13Z + a14 — ann Xz — xasY — xa437 — va44 =0 (1.37)
a1 X + axY + a3 Z 4 ags — ann Xy — yasY — yaszZ — yagy = 0. (1.38)
In the above equations there are 12 unknowns (a1, ... ... ,a44), and five knowns (X, Y, Z, z, y).

One point in 3-D with coordinates (X,Y,7), and corresponding image coordinates (z,y)
gives two such equations with 12 unknowns. n such points will give 2n equations, which can
be solved for 12 unknowns.

a11X1 + a12Y1 + a1321 4+ a14 — 21000 X1 — T1042Y1 — 21043727 — T1044 = 0 (1.39)
11Xy + a12Ys + @132 4 a14 — 22041 X9 — T2a42Y5 — 22043729 — T2044 = 0 (1.40)
a11 Xy + a12Y, + @132, + a14 — zpan X, — vp042Y, — 0432, — Tp044 = 0 (1.41)
a1 X1 + aY1 4+ a3Z1 + azq — Y1041 X1 — Y1042Y1 — Y104371 — Y1044 = 0 (1.42)
a1 X9 + ag2Yo + @32y + a4 — Y2041 X9 — Yoa2Yo — Y2a4379 — yaagq = 0 (1.43)

a1 Xy, + a22Y, + @932, + agq — Ynann Xy, — Yn0a2Yy — Ynta3Zy, — Yntaqa = 0 (1.44)
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In these equations the subscripts on (X,Y,7) and (z,y) denote the point number. The
above system can be written in matrix form as follows:

Can ]
I X1 Yl Zl 1 0 0 0 0 —$1X1 —$1Y1 —$1Z1 — I | 312 [ 0 ]
X2 Y2 ZQ 1 0 0 0 0 —.rng —$2Y2 —;rng — XT3 aii 0
ag
X, Y, Z, 1 0 0 00 —-z,X, -z.Y, —-z,74Z, —z, az | _ 0 (1.45)
0 0 00 Xx Y1 41 1 —-yXa -wV1 -nZ1 -wun ag3 0™
0 0 00 Xo Yy Zo 1 —yppXo —wYo -1y —u a4 0
: a4 :
0 0 00 X, Y, Z, 1 =y, X —0Yn —ynZn —in 42 0
L 1 s LV
L @44 |
or
CP =0, (1.46)

where C' 1s a 2n x 12 matrix, P a is 12 x 1 vector, and 0 is also a 12 x 1 vector. This is a
homogeneous system which has multiple solutions. Therefore, we can arbitrarily pick one of
the unknowns, and determine the remaining unknowns. Let a44 = 1, then the above system
can be rewritten as:

_ an -
[ X1 Yl Z1 1 0 0 0 0 —X1£C1 —$1Y1 —.T1Z1 1 @12 [ 1 ]
X2 Y2 Z2 1 0 0 0 0 —Xgibg —ZCQYQ —$2Z2 a3 )
. 14 .
- a2 '
X, Y, Z, 1 0 0 0 0 —X,z, —z,Y, —z,72, T
ag9 = (147)
0 0 00 X4x Y7 42 1 -Xipn —-nmY1 —-ns s Y1
0 0 00 Xo Yy Zy 1 —Xoyo -—w2Yo -7 oy Y2
. 41
L 0 0 0 0 Xn Yn Zn 1 _Xnyn _ann _ynZn 1 42 L Yn 1
| @43

DQ = R (148)

In the above system, the matrix D and vector R are known. We can determine the 11
unknowns in vector ) by using the pseudo inverse, if at least 5.5 or more 3-D points and
their corresponding image coordinates are known. Multiplying the above equation by DT
on both sides and rearranging we get:

DTDQ = D'R (1.49)
Q = (D"D)'DTR. (1.50)

Once @) is determined, the matrix A is defined, which completes the camera calibration.

1.7 Recovering Camera Parameters

An interesting inverse problem deals with the recovery of camera parameters from the camera
matrix. For example, given a photograph taken by an unknown camera from an unknown
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location which, has been cropped and/or enlarged, how can we determine the camera’s posi-
tion and orientation, and determine the extent to which the picture was cropped or enlarged?
Applications of this occur in several areas. For instance, in autonomous navigation, a cruise
missile could obtain the camera transformation matrix from a terrain model stored on-board
and then compute the camera parameters that define the vehicle’s location and heading.
Also, a stationary camera viewing a robot arm workspace could determine the position of
the arm. The markings of several points on part of the manipulator would allow their easy
extraction from an image and provide ground truth for the camera calibration. The camera
parameters can then be derived from the camera transformation matrix, and the location
and orientation of the manipulator can be obtained relative to the stationary camera.

1.7.1 Camera Location

Consider a 3-D point X1 with coordinates (X1,Y1,71,1) (see Figure 1.4). If camera matrix
A is known we can determine the image coordinates of a point by using equation 1.30, that
is Ul = AX1, where Ul = (C},, Ch,, Ch,, Cr,). If we multiply Ul with A~ we should get
the original X1 back. Let us set Cp, = 0, then U1’ = (C},, Ch,,0,Ch,). Now, backproject
Ul by A7'U1’ = X11. We will get a new 3-D point X11, which should lie on the same
line connecting X1 and the center of projection L (see Figure 1.4). Similarly, we can take
another 3-D point X2 = (X2,Y2, 72, 1), and generate X21, which will lie on the line passing
through X2 and the center of projection. Now, we can easily determine L by the intersection
of these two lines.

1.7.2 Camera Orientation

The orientation of a camera is defined as the orientation of the image plane. It is clear from
Figure 1.5 that as the object moves closer to the lens its image moves farther away from the
image center along the Y —axis. When the object is at the lens, the image will be formed
at infinity. The only way the image of a finite world point can be formed at infinity is if
the fourth component of the homogeneous image coordinates is zero. From equation 1.30 we
have

Chy X
Ch, | Y
Ch | A 7| (1.51)
0 1
which gives the following constraint on the camera orientation:
G41X + CL4QY + G4BZ + g4 = 0 (152)

This is the equation of a plane passing through lens L parallel to the image plane. From
this equation it is clear that (a41, a2, a43) is the normal to the image plane, and parallel to
the camera.

The orientation in terms of clockwise rotation, #, around the X —axis, followed by the
clockwise rotation, ¢, around the Y —axis(as shown in figure 1.3), is given by:
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z

Figure 1.3: Camera Orientation.

f# = arctan a427 (1.53)

—da43
—a41

Vag? + ag? + a43?

¢ = arcsin

(1.54)

It is also possible to compute the focal length, scaling and other camera parameters from
the camera matrix. However, the derivations are fairly involved, therefore we do not cover
them in this introductory book. The interested reader should look at [23] in the bibliography
for the details.

1.8 Rodrigue’s Formula

Assume that we want to rotate vector v around vector n by angle §. We can decompose
vector v into two parts, one collinear to n, and other perpendicular to n as follows, (see

Figure 1.6):
v=(v.n)n+ (v—(v.n)n). (1.55)

The first component is invariant under rotation, whereas the second component, under-
goes a planar rotation through angle § which may be written:

cos (v — (v.n)n) + sinf(n x (v — (v.n)n)). (1.56)
This gives:

v’ =cosfv+sindnxov+(1—cosb)(v.n)n, (1.57)
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X11 X1

u2
X21
X2

X

Figure 1.4: Determining the location of camera. The image of 3-D points X1 and X11 is
formed at U1, and image of points X2 and X21 is formed at U2. The intersection of a line

passing through X1 and X11 with the line passing through X2 and X21 is L, which is the
location of camera.

or
v'=v+4sinfnxv+(1—cosf)n x(nxwv), (1.58)

where n X (n x v) = (v.n)n — v. Now, from the above equation the rotation matrix Rj can
be written as:

R; =1+sinf X(n)+ (1 — cos G)X(n)Q, (1.59)

where X (n) is operator which is the vector product by n, that is the antisymmetric matrix
formed from the components of n as follows:

X(n) = n, 0 —n, |. (1.60)

—ny Ny 0

Therefore to represent the rotation, we need vector n, and the angle §. We can further

simplify this, and represent the rotation by only a vector, r, such that:
r
r=|r||-=—=0n. (1.61)
7l
The magnitude of r is the amount of rotation, and the direction of of r is the axis of rotation.
Finally, the rotation matrix can be written as:

X X(r)?
R = TITII =1 +sinf (r) + (1 — cos ) (r) (1.62)

17l [Irl*

where X(r) is given by:

X(r) = T 0 —ry |. (1.63)

—ry Ty 0
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OBJECT

OBJECT IMAGE LENS

IMAGE LENS

OBJECT

IMAGE LEN

Figure 1.5: Determining the orientation of camera. As the object moves closer to the lens
its image moves farther away from the image center along the Y —axis. When the object is
at the lens, the image will be formed at infinity.
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Vv

(v.n)n

v-(v.n)n

Figure 1.6: Rotation of vector r around vector n by angle 6.

1.9 Quaternions

A quaternion is a pair ¢ = (s, w), where s is a scalar and is commonly called real part of ¢,
and w is a 3-D vector, and is called imaginary part of ¢. Two quaternions can be added like
any 4-D vectors. However, multiplication of two quaternions is given by:

(s,w)* (s w') = (88 —ww',wxw + sw + s'w), (1.64)

where “x” and “.” denote the usual vector and dot products. The conjugate and the norm
of a quaternion are defined as:

q = (s,—w), (1.65)
P = qrq=wl’+s" (1.66)

~—~

lq

For any rotation R of a 3-D vector, p, there exist two opposite quaternions ¢ and —gq
which satisfy Rp = ¢ * p* ¢ (p is converted to a quaternion by assuming zero real part, and
similarly the real part of the resultant quaternion on the right is set to zero to match with
the rotated vector on the left side). The quaternion ¢ is computed from the unit direction
vector n of the axis of rotation and its angle # by the formula:

0 0

q= (008(5),sin(§)n). (1.67)

Similarly, to each pair of unit quaternions (¢, —¢) there is a associated unique rotation matrix
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R,
a?+ b6 —c—d? 2(bc — ad) 2(bd + ac)
R = 2(bc + ad) a*+ - b — d? 2(ed — ab) (1.68)
2(bd — ac) 2(cd + ab) a4+ d* — b —

where ¢ = (a, b, ¢, d).

1.10 Pose Estimation

In pose estimation, the problem is to determine the orientation and position of an object
(camera) which would result in the projection of a given set of three-dimensional points
into a given set of image points. One of the important applications of pose estimation is in
the model based object recognition. In 2-D to 3-D model based object recognition a 3-D
model of the object, and its 2-D projection from a particular vantage point of the camera is
given, the aim is to determine three rotations and three translations relative to some base
coordinate system.

Let (X', Y, Z") be the 3-D model coordinates of a point, and (z’,y’) be the projected
image coordinates. Assume that the object (camera) is rotated first by (¢x, ¢y, ¢z), that
maps (X', Y', 7') to (X, Y, Z). Next, the object is translated by (Tx, Ty, T7), and finally the
image is produced using perspective transformation using lens centered coordinate system,
and taking positive value of f. The image coordinates after perspective projection are given

by:

roony f(X—I_TX) f(Y—I_TY)
() = (L) LT,

(1.69)

In order to simplify these equations, instead of using translation (Tx,Ty), we will use
(Dx, Dy), which are the projected image displacement in  and y direction, and Dy is 3-D
translation in Z direction. Now, the image coordinates are given by:

X Y
(z'y') = (%DZH)X,%DZHDY): (fXc+ Dx, fYc+ Dy), (1.70)

where ¢ = Z-|—1—Dz'

The pose estimation can be formulated as an optimization problem which minimizes the
error between the model and image coordinates [12]. The error between the components
of model and the image can be expressed in terms of small changes in the six unknowns
(Dx,Dy,Dz,¢x, by, dz), and their derivatives with respect to the image coordinates. Since
errors are known, the small changes in the parameters can iteratively be computed from these
equations, and the next estimate can be obtained by adding the changes to the previous
estimate. The equation for error, F,/,, in ' image coordinate as the sum of the products
of its partial derivatives times the error correction values (using the first order Taylor series
approximation) can be written as:

! ! ! ! ! !
= SpADx+ S ADy + S ADy + D At 5 Ady + 5 Ads (171

o



20 CHAPTER 1. IMAGING GEOMETRY

The partial derivatives in the above equation can be easily computed from equation 1.70.

' ./ X 8z , X A
For example, 22~ = 1, and 22 — f2X 1/ 22 We can compute 22 and 2
LT ; b6y = | 0y 72D, ~ ZhD,7 Dby pute 557 .

from the rotation matrix, R};. As we know if (X', Y’, Z') is rotated around Y-axis by angle

dy, the new coordinates (X, Y, 7) are given by:

X = X'cos¢y + Zsin ¢y, (1.72)
Y = v, (1.73)
7 = —X'singy + 7' cos dy. (1.74)
Then,

STX = —X'sindy + Z'sin ¢y = Z, (1.75)

Y

Y

A
887 = —X'cosdy — Z'sin gy = —X. (1.77)

Y

We can compute the other partial derivatives similarly. We can also write a second equation
for 3’ image coordinates similar to equation 1.71, and compute the partial derivatives. The
partial derivatives of ' and y’ with respect to each camera parameter are given in the Figure
1.7.

For m image points we can write 2 x m equations with six unknowns. This linear systems
of equations can be written as follows:

AA = E, (1.78)

where A is the derivative matrix , A is the vector of six unknowns parameters, (Dx, Dy,
Dz, éx, ¢y, ¢z), for determining orientation and location of camera, F is the vector of error
terms. Now, the problem is to compute A, which can be done using the least squares fit as
follows:

A= (ATA)ATE. (1.79)

Figure 1.9 shows a demonstration of this method for pose estimation.

We can also use lines instead of points in the pose estimation. One possible approach
is to measure errors as the perpendicular distance of each endpoint of the model line from
the corresponding line in the image, and then take the derivatives in terms of this distance
rather than in terms of 2’ and 3’. The equation of line can be written as:

—m + 1 J
x =d,
vm?2+1 Vm? + ly
where m is the slope, and d is the perpendicular distance of the line from the origin. The
equation of a line through point (z’,y’) can be obtained from equation 1.80 by substituting

(z',y") instead of (z,y) and d' instead of d. Then the perpendicular distance of point (z',y’)
from the line is simply d — d'. It is easy to calculate the derivatives of d' for use in the

(1.80)

iterative scheme, because the derivatives of d’ are just linear combination of z’ and y’, which
we already know.
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!/

x y

Dx 1 0

Dy 0 1

Dy —ftX —fc*Y
ox —fXY —fe(Z + ¢Y?)
dy | fe(Z 4 cX?) fXY
¢z —fcY JeX

Figure 1.7: The partial derivatives of image coordinates with respect to each of the camera

parameters.

1. Start with an initial estimate of six parameters, (D% DY, D%, 6%, %, ¢%). If you do
not know, assume all parameters to be zero.

2. Apply transformation to the model, and project the model on the image plane by

computing (z',y).

3. Compute the errors E,., and FE,. If the errors are acceptable, quit.

4. Find change in six parameters,(ADx, ADy,ADz, Adx, Ady, AdY) of transformation,
by using least squares fit. Goto step (2).

Figure 1.8: Pose estimation algorithm.
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\\/@

(c) (d) (e)

Figure 1.9: (a) The 3 — D model of a drill. (b) The projection of the edges, when the drill
is in unknown pose. (c¢) The position of drill after one iteration. (d) The position of drill
after two iterations. (e) The position of drill after three iterations, which is the correct pose

of the drill.
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1.11 Exercises

1.

11.

13.

What is the rotation matrix for an object rotation of 30° around the Z axis, followed
by 60° around the X axis, and followed by a rotation of 90° around the Y axis. All
rotations are counter clockwise.

. What 1s the rotation matrix for an object rotation of ® around the X axis, followed by

U around the X axis, and followed by a rotation of © around the Z axis. All rotations
are counterclockwise.

Consider a vector (7,3,2) which is rotated around the Z axis by 90°, and then rotated
around the Y axis by 90° and finally translated by (4, —3,7). Find the new coordinates
of the vector. All rotations are clockwise.

. Show that following identities are true.

Y pX _ pZ Y Y pX _ pZ Y
RQORQOX_ RQEORQ% RQO}]?ISOX_ RISOZRQO X
Y _ —
RISORQO — R180R2707 R180R270 - RISORQO'

Derive equations 1.28 and 1.29.

Consider the following camera model. Assume that first the camera gimbal center is at
the origin of the world coordinates. Next, the camera is translated by amount (0, 2, 2),
and it is rotated by angle 90° around 7 axis , followed by rotation of 135° around X
axis. Both rotations are in the clockwise directions. After that the camera (image
plane) is translated by amount (.02,.01,.03) with respect to gimbal center. Finally,
image is formed using perspective transform. Assume that focal length of the camera
is .030. Find the image coordinates of the point which has world coordinates (1,1,0.2).

Show how any image point (xg, o) is mapped to the world coordinates using the inverse
perspective matrix, verify that the equations 1.25 and 1.26 are satisfied.

Derive equations 1.53 and 1.54.

. Verify equations 1.56, 1.60 and 1.62.
10.

Given 3 x 3 rotation matrix, R, compute r in the Rodrigues’ formula.
Verify equation 1.68.
Given 3 x 3 rotation matrix, R, compute quaternion g.

Suppose we want to minimize the squared sum of distances between a set of points p; and
their rotated versions p! = Rp;. Show that minimizing criterion

C =30 — Rpill, (1.81)
can be written as

¢ = Z [Aiq]'[Asq) = qt[z AlAlq, (1.82)

where A; is a 4 x 4 matrix depending on p; and p’.. The solution is given by the unit eigen
vector associated with the smallest eigen value of the matrix B = }_; A%A,.
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14. Assume p, ¢ and r be quaternions. Show that:

15.

16.

17.

18.

19.

(p*q) = —(q*p), (1.83)
(pxq)(pxq) = (pp)-lg9), (1.84)
(pxq).(pxr) = (p.p)-(gr), (1.85)

where . is the dot product.

A rotation matrix R for rotation around an arbitrary vector by some angle can be
expressed as the product of three rotations (Euler’s angles): rotation around X axis
by angle ~, followed by the rotation around Y axis by angle  and followed by the
rotation around Z axis by angle . All the rotations are counter clockwise. Show that:

cosacos 3 cosasinfsiny —sinacosy cosasin Fcosy + sin asin~y
R = sinacosf sinasinBsiny + cosacosy sinasin3cosy — cos asiny
—sin 3 cos Fsin~y cos 3 cosy

For small rotations we can assume sin = 6, and cos § = 1. Simplify the above matrix
assuming small rotations. Is the rotation matrix now linear in «, 3 and ~?

Given 3 x 3 rotation matrix, R, compute Euler's angles «, 3 and 7.

Derive the expressions for the partial derivatives given in the Table shown in Figure

1.7.

By using equation 1.80 compute the perpendicular distance of a point (2',y’) from a
line.



Chapter 2

Edge Detection

2.1 Introduction

Edge detection which has attracted the attention of many researchers! is one of the most
important areas in lower level computer vision. However, it seems that the problem of
detecting edges in real scenes is still an unsolved problem in a general sense. Edge detection
is important because the success of higher level processing relies heavily on good edges.
Gray level images contain an enormous amount of data, much of which is irrelevant, e.g.,
the background of the scene. So at the initial stage, the effort is made to reduce some of the
data; the objects are separated from the background and entities such as edges which are
physically significant are identified.

In the stereo techniques, for instance, images taken from two different locations are
utilized to get the depth information. All stereo techniques deal with the “correspondence”,
where the tokens from the right and left image are matched in order to get the disparity
of two images. The edge information plays an important role in the selection of tokens. In
motion, the detection of moving objects is done by identifying the time varying edges and
corners. The approaches to structure from motion, through which the three dimensional
structure of objects is computed, also require correspondence of tokens. Object recognition
methods based on only the two dimensional shape use the edge information. Most algorithms
for recognizing the partially occluded objects assume the presence of good edges.

2.2 Types of edges

Since the gray level function changes significantly at the edges of objects, the ideal edge
can be modeled by the step function. In real images, however, the gray level at the edges
of an object does not change abruptly, but instead, changes gradually. These edges can be
modeled by the ramp function. Sometimes two steps and/or ramps appear close together;
these are respectively called spike and roof edges. The possible types of edges are shown in
Figure 2.1.

1©1992 Mubarak Shah 95
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(@) (b)
© ()

Figure 2.1: Types of Edges. (a) Step, (b) Ramp, (c¢) Spike, and (d) Roof.

2.3 Three stages in edge detection

Most edge detection schemes consist of three stages: filtering, differentiation, and detection.
In the filtering stage, the image is passed through a filter in order to remove the noise. Noise
can be due to the undesirable effects introduced in the sampling, quantization, blurring
and defocusing of the camera, and irregularities of the surface structure of the objects.
The differentiation stage highlights the locations in the image where intensity changes are
significant. Finally, in the detection stage, those points where the intensity changes are
significant are localized.

In the earlier approaches the filtering step was skipped, the differentiation step was per-
formed by using the finite-difference approach, and the detection was done by locating the
peaks in the gradient of the intensity function using a threshold. In these approaches, filter-
ing was not crucial since only synthetic images and the industrial scenes with a controlled
environment were considered. Later, Sobel introduced the averaging step before the differ-
entiation step. Since averaging is a kind of filtering, better results were obtained by the
Sobel operator. Determination of the threshold depends on the domain of the application
and varies from image to image. Automatic selection of thresholding is still a hard problem.

Haralick [4] performs the differentiation step by first fitting a piecewise continuous poly-
nomial to the gray level neighborhood of a pixel, and then finding the partial derivatives of
the polynomial. In this approach, the filtering step is not explicit, but the fitting essentially
smooths the gray level image and thus performs a filtering step. Intuitively, the error of fit
controls the degree of smoothing. Canny [3, 2] uses Gaussian in the filtering stage and com-
putes the first directional derivative along the gradient direction during the differentiation
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stage. In the detection stage Canny, detects peaks in the derivative output to locate the edge
points. Marr and Hildreth also use Gaussian as a filter [13]. They perform differentiation
step by the Laplacian, which is the sum of the second partial derivatives along the z- and
y-axis.

2.4 Filtering Stage

The most simple filter is the mean filter. In the mean filter, the gray level at each picture
element (pixel) is replaced by the mean of gray levels in a small neighborhood around the
pixel. This way the random noise is averaged out. Let f denote the image which we want to
filter, h denote the filtered image, and consider a 3 x 3 neighborhood around a pixel. Then

Mey) = F@—Ly= g+ f@—Ly)g + i~ Ly+ g+ fay =g

+ f(;r,y)é + flz,y+ 1)% + fla+1,y— 1)% + flz + Ly)é + flz+1,y+ 1)%(2-1)
hz,y) = flz—1,y-Dg(-1,-1)+ f(z - 1,y)9(~=1,0)+ f(z — 1,y + 1)g(~1,1)

+ flz,y—1)g(0,~1)+ f(z,9)9(0,0) + f(z,y + 1)g(0,1)

+ St Ly=Dg(L -1+ fz+1Ly)g(L0)+ f(e+ 1,y + Dg(1, 1) (2.2)
Moy = XS fati+ Dot (23)
Mz y) = flz,y)*g(z,y). (2.4)

Here ¢ denote the filter, and * denotes the convolution operation. The filter in this case is
3 x 3, and each pixel in the filter is set to %. The filter g is convolved with the image f and
the result is a filtered image h. The convolution operation is widely used in Computer Vision
and Image Processing. The convolution operation can be visualized as passing around a filter
mask (mask ¢) in the image from left to right, top to bottom as shown in Figure 2.2. The
mask is centered at each pixel in image f, and the sum of the corresponding pixel-by-pixel
product is computed.

The mean filter performs equal averaging; each pixel value around a small neighborhood
is assigned equal weight. Another useful filter is called Gaussian. In the Gaussian filter each
pixel’s weight is inversely proportional to the distance from the central pixel. The Gaussian
is defined as:

—(=244?)
g(l’,y) =ec 2‘;'2-?] ) (25)

where o is the standard deviation of Gaussian, and controls the mask size. The mask
of g(x,y) can be generated for a given value of o by taking various values of z, and y,

and substituting in the above formula. For example, with + = —1, y = —1, and ¢ = 1,
—((=1)2+(=1)%)
G(-1,—-1) = e 207 = 0.367, similarly G(0,1) = 0.60. It is common to scale the

coefficients in the Gaussian filter to the nearest integers. Because the image gray levels
are integers, it is simpler to perform integer multiplication as compared to real number
multiplications. The mask of the Gaussian filter for ¢ = 2, multiplied by 255, and truncated
to the nearest integer is shown in Figure 2.3. Note that this is a 13 x 13 mask. For values
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fx-Ly+1)  f(x,y+1) f(x+1y+1) 19 1/9 1/9

fx-Ly-1)| f(x,y-1)| f(x+1y1l) 1/9 19 1/9

Figure 2.2: Convolution operation.

fely) | foy) | focrLy, >‘< 9 9 ve | — h(X ’

y)

z,y > |6], the G(z,y) is very small. Therefore, those values have been ignored. However, for
the higher values of o, the mask size has to be bigger. Since the Gaussian function becomes
less than 1% of its maximum value for x,y > 30, it is appropriate to use a mask size of at
least 60 + 1.

2.5 Differentiation Stage

The derivative of a continuous function f is defined as:

po A T = e A 26)

dz Azr—0 Ax

Since images are discrete, the minimum value of Az can be 1. Now the above formula
reduces to:

=T @) g -, (27)

This is called a discrete approximation of a derivative. Consider a row profile from an image
as shown in Figure 2.4.a. Its derivative by using the above formula is given in Figure 2.4.b.
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Figure 2.3: Gaussian mask with o = 2.

Note that the derivative can be computed by applying a mask to f, similar to filtering an
image. In this case the mask simply consists of two elements as shown in Figure 2.4.d. fis a
step edge, and its derivative gives a high value at the location of an edge. There are several
other masks widely used for computing the first derivative as shown in Figure 2.4.e—f.

Images are two dimensional. A gradient vector of f(z,y) is (f., f,), where f, is the
derivative in the z direction, and f, is the derivative in the y direction. The gradient has
magnitude M, and direction # as defined below:

[S™]
0°¢)
~—

§ = arctan =L, (2.

M o= L (2.9)

The directional derivative in the direction 8 is defined:

, _Of af .
fo= £ cost + By sin 8.

There are several masks for computing gradient (f;, f,), some are shown in Figure 2.6.

2.6 Detection Stage

2.6.1 Normalized Gradient Magnitude

Let M(z,y) = \/fl?(:z:,y) + f2(z,y) be a gradient magnitude at pixel (z,y). Define N(z,y)

as the normalized gradient magnitude scaled between 0 to 100 as follows:

M(z,y)

Maxi=1,. nj=1,.,M(,7)

N(z,y) = % 100. (2.10)
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(a) f(x) 10 10 10 10 10 20 20 20 20 20
b) (x) 0 0 0 0 0 10 0 0 0 0

(¢) f°(x) 0 0 0 0 0 10 -10 0 0 0

BN [-tjofoft]
(d) (e) (f)

Figure 2.4: Differntiation. (a) A one dimensional function f(z). (b) Derivative f'(x) using
the discrete approximation. (c¢) Second derivative f”(z). (d) Derivative mask. (e)—(f) Two
additional derivative masks.

Then edges can be detected by applying a threshold 7" on the normalized gradient magnitude
N.

1 if N(z,y) > T

0 otherwise

E(z,y) = { (2.11)

where E(x,y) is an edge map.

2.6.2 Non-maxima Suppression

In the above detection method, we only used the gradient magnitude; we did not use the
gradient direction. The gradient direction is always perpendicular to the edge, and the
gray levels change the most in that direction. If a certain pixel’s gray level is not changing
significantly in the direction of gradient, then that pixel probably is not an edge point. We
need to suppress that (non maxima) point. Mathematically the non-maxima suppression is

defined as:

M(z,y) if M(z,y) > M(x!,y!) and
M(z,y) = it M(x,y)> Mz, yn) (2.12)

0 otherwise

where M(z',y") and M(x",y") are the gradient magnitudes on both sides of edge at (z,y)
in the direction of the gradient as shown in Figure 2.5.a. This step will suppress the points
which are not potential edge points. Now the non-maxima suppressed gradient can be
normalized as done in the previous section, and the threshold can be applied to produce a
better edge map. It is necessary to quantize the gradient direction into a fixed number of
directions. During the non-maxima suppression the gradient magnitude at the appropriate
pixels can then be compared. In one possible scheme the gradient direction is quantized into
eight directions consisting of 0,45,90,135,...,315. Figure 2.5.b shows the corresponding
pixels to be compared during the non-maxima suppression step.
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@ (b)

Figure 2.5: (a) Non-maxima suppression. (b)Eight possible gradient directions.

2.7 Classes of edge detection schemes

The edge detection schemes can be classified in three categories. The first category deals
with the early 3 x 3 and 5 x 5 gradient operators, which includes Prewit, Robert, Sobel,
and Laplacian operators. In the second category, the operators which are based on a kind
of surface fitting are included. The operators of Hueckel [10], Hartly [5], and Haralick’s [4]
facet model approach to edge detection belong to this category. Finally, the third category of
edge detection schemes consists of the techniques which employ the derivatives of Gaussian.
Recently, the operators in this class have become quite popular because these operators
perform reasonably well for real scenes. Gaussian does a kind of weighted averaging of
the gray level image in order to remove the noise. These operators use fairly larger masks
and therefore are computationally expensive. However, some efforts have been made to
reduce computational complexity by utilizing some properties of operators, and VLSI based
implementation have also been proposed [20].

2.8 Gradient Operators

A number of 3 x 3 and 5 x 5 edge operators are known. The first of such operators was
proposed by Robert. In addition to Robert’s operator, Prewit and Sobel operators have
been used extensively in the past. These operators essentially compute the gradient at a
pixel location along the principle directions. The most common directions are X and Y, but
diagonal and anti-diagonal directions have also been used. The computation of the gradient
is performed by the finite difference method for differentials, as discussed in the section on
differentiation.

In Figure 2.6 we show the Robert, Prewit and Sobel operators in their most simple
form. The Robert and Prewit operators assign equal weights to the pixels, but in the Sobel
operator, the closer pixels are assigned more weight.

The computation of the magnitude of the gradient involves square root operation, which is
expensive. Therefore, various simplified approximations of the gradient magnitude have been
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Figure 2.6: Classical Gradient Operators. (a) Robert’s operator, (b) Prewit’s operator, (c)
Sobel’s operator, (d) Laplacian operator.

used such as: (a) max(|Az|,|Ay|), (b) |Az| + |Ay|. The first one avoids the computational
cost of the square and square root operations. In addition, it yields values in the same
range as the original gray scale, which is convenient for display purposes. While the second
approximation has a larger range of possible values, and introduces a bias for and against
the diagonal edges.
The Laplacian operator has also been used as an edge operator. The Laplacian is given
by:
2 2
A'f = or, o
dx?  0y?
This is an orientation independent derivative operator. Its discrete approximation is given
as follows:

AN f(z,y)=—[flz+1Ly)+ fle=19)+ f(z, y+ 1)+ f(z, y = )] +4f(z,y).

The convolution mask for this operator is shown in Figure 2.6.d. In a noisy picture, the
noise will produce higher Laplacian values than the edges.

There is no explicit filtering stage in these earlier operators. They perform well in syn-
thetic scenes and in the real scenes where the illumination is controlled. The resulting edges
are thick, therefore, extra thining algorithms have to be applied. However, since they are
computationally cheap they are still popular in industry. Commonly used mask sizes for
these operators are 3 x 3 and 5 x 5. The bigger masks for some of the operators can be
computed, but, the resulting edges are very thick. Haralick [4] reports that “It is obvious
from the experiments that good gradient operators must have larger neighborhood sizes than
3 x 3. Unfortunately, the larger neighborhood sizes also yield thicker edges.”

2.9 Facet Model

There are a number of edge detectors that are based on some kind of image surface modeling.
These methods usually involve an initial parameterization of the image in terms of basis
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functions followed by the estimation of the amplitude and position of the best fitting steps
edge from the parameters. One of the earliest examples of this method was the Prewit
operator [19], which used a quadratic set of basis functions. The Prewit operator is commonly
known as the 3 x 3 operator which was discussed in the previous section.

Haralick [4] fits a bi-cubic polynomial to the neighborhood of a pixel. He computes the
second and the third directional derivatives in the direction of the gradient of the intensity
function in terms of the coefficients of the polynomial. The coefficients for a given pixel
location can be found by using the least-square fit to the gray level neighborhood of the
pixel. A given pixel is declared as an edge point if (i) the second derivative is equal to zero,
and (ii) the third derivative is negative.

Haralick considers the following polynomial in x and y which are the row and column
coordinates.

f(z,y) = ki + ko + kay + ka2 + kszy + key® + kra® + ks2’y + kozy® + kioy®.  (2.13)
The gradient angle, 6, with positive y-axis at (x,y) = (0,0) is given by

Ginf =t (2.14)
\ ko? + ks
k3
cosfh = ——2 (2.15)

\ ko 4 k3®
For a given direction vector (sin 8, cos ) the first and second directional derivatives are given

by the following equations.
af . af

folz,y) = —xsm(?—l— a—ycos 0, (2.16)
2 2 2
J(zy) = %sinw + g—y];COSQG + Qaaxgy cosf sin 8. (2.17)

Using the cubic polynomial approximation of f given by equation 2.13 the expressions for
tan @, sin @, and cos @, at * = 0,y = 0, where 6 is the gradient angle, can be computed. Now
applying the substitution of variables = psin @, y = pcos 6 into equation 2.13, f(x,y) can
be changed into fy(p) as shown below:

fo(p) = Co+ Cip + Cap* + C3p®, (2.18)
where
Co — kl,
(7 = kysinf + kscosf,
Cy = kysin®0 + ks sin 6 cos § + kgcos*0,
Cs = krsin®0 + kgsin®6 cos 0 + kg sin fcos?0 + kygcos>9.
Differentiation the fy(p) with respect to p we get:

fal(P) = 1420+ 303/)2, (2.19)
f@ll(ﬂ) = 205 + 6C5p, (2.20)
fi"(p) = 6Cs. (2.21)
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From the second condition fy"(p) < 0, we get 6C3 < 0, or C3 < 0, and from the first
condition fy"(p) = 20y 4+ 6C3p = 0, we get |30723| < po.

The main steps in Haralick’s edge detector are given in the Figure 2.9. The first step
involves the computation of ki, ks, ks, ..., k1o using the least squares fit. Once the ks are
known the detection of edges is very straight forward.

It is interesting to note that the computation of ks using least squares can be viewed as
the application of masks to the image. We will show that by considering a simple case of a
first order polynomial. However, the process can easily be extended to cubic or any higher
order polynomials.

Consider a first order polynomial:
f(x,y) = ky + kax + ksy. (2.22)

We want to compute ky, ko, k3 using least squares fit. We will consider a 3 x 3 window
around each pixel in the image. Let us number pixels in the window as shown in Figure
2.7, and assume the origin to be at the center. Therefore, the local coordinates of (z,y) of
each pixel are shown in Figure 2.7. If we substitute the (z,y) coordinates of a pixel and its
corresponding gray level in the above equation, we get one equation. For nine such pixels in
a small neighborhood we will get nine equations as follows:

JU= ki + ka1 + kayn, (2.23)
f2 = kl + kg.’l?g + kgyg, (224)
f9 = kl —|— kg(lfg —|— kgyg. (225)

2.26)

This system of equations can be written as:

f1 I 2 1
2 1 =z 1
.f = : 2 ka |, (2.27)
. . k
f9 I z9 yo ’
f = Ak. (2.28)

Now, vector k can be computed using the pseudo inverse method as follows:

(ATA)TATf = k, (2.29)
Bf = k, (2.30)
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U = —=— 11 01 11
\
-10 00 10
\
\ 1-1 |0-1 11
|
|
f1 | f2 | 3 by |b g |b o
Ky =] 14 f5 | f6 >’< by|bis|b s
7 | f8 | fo by | by | by

Figure 2.7: Facet convolution. k; for a pixel at ‘X’ is computed by applying a mask b
(determined from the first row of matrix B) to a 3 x 3 neighborhood of image.

where B = (ATA)_IAT is a 3 x 9 matrix. The above system can be written as:

iR
f2
f3

biv b1z bis bis bis big bz bis big J4 k1
byt Doy baz bas bas by bar bag by Jo | =1 k2. (2-31)
b3y b3y bsz bas b3z bsg b3z b bag J6 k3

7
18
L /9 ]

Now, kq, ks, and k3 can be computed from the above equation by using convolution. For

example, ky is given by:
ki = bifl4b12f24 bisf3 4 biafd + bisfd + bigf6 + bir f7 4 bisf8 + big f9, (2.32)

which is convolution:

k‘lzf*bl,

where, by is the first row of matrix B. This shown in Figure 2.7.

The convolution masks for ks are given in Figure 2.8. The motivation behind the use
of a facet model was to achieve an analytical expression which describe the gray level func-
tion around a pixel in the continuous domain. The definitions of partial derivatives in the
continuous domain can be applied in order to detect discontinuities in the gray level images.
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Figure 2.8: Haralick’s masks for computing ks.

. Find ky, kg, ks, ..., k1o using least square fit, or masks given in Figure 2.8.
. Compute 6, sinf, cos 8.

. Compute Cy, Cs.

It Cs3 <0 and |3%"3| < po then that point is an edge point.

Figure 2.9: The steps in Haralick’s Edge Detector.
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e

Figure 2.10: (a). The bottle image. (b). The edge map from the Haralick edge detector
with p = 0.4, and C5 = —1.7.

1. Generate a mask for LG for a given ¢ using equation 2.34.
2. Apply mask to the image.
3. Detect Zerocrossings.

(a) Scan along each row, record an edge point at the location of zerocrossing.

(b) repeat step (a) along each column.

Figure 2.11: Steps in LG operator.

The results obtained from this edge dtector are shown in Figure 2.10.

2.10 Laplacian of Gaussian Operator

The Laplacian of Gaussian (LG) edge operator, proposed by Marr and Hildreth [13, 8, 14],
has been widely used. This operator has been used for image segmentation as well as for
image matching for passive stereo. Briefly, this operator has the following properties: It uses
the Gaussian filter for noise elimination. A simple detection scheme is used. Since locating
the extrema of functions which are flat is not a simple task, the edge points are located
by detecting zerocrossings in the Laplacian of the intensity function, rather than locating
extrema in the first partial derivative. Further, this operator does not require an explicit
thresholding, and there is a possibility of extracting edges from different spatial frequency
ranges of the image. Finally, the response of this operator resembles the response of the
center-surround cells found in biological vision systems.
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(a) (b)

(c) (d)

Figure 2.12: (a) 1-D Gaussian filter with o = 1. (b) 1-D Gaussian filter with o = 2. (¢) 1-D
Gaussian filter with o = 4. (d) Second Derivative of Gaussian, g, with o = 1.

The analytical expressions of the operator in one and two dimensions are given in the

following.
z? —a?
oalz) = (1= —)ex7, (2.33)
d*g % 22 4yt )
/ 2 ey _ _— = — 202 2
Nglew) = Sh+ 50 =kz-TE ) (2.34)

where k is a multiplicative constant which does not depend on (z,y). We show the 1-D
profile of Gaussian for ¢ = 1,2,3 in Figure 2.12.a-c, and the second derivative of Gaussian
in Figure 2.12.d. We show the 2-D profile of Gaussian and LG for ¢ = 1,2 respectively in in
Figures 2.13.a-b, and 2.12c—d.

In this edge detection scheme the image is convolved with LG operator first. Then zero-
crossings in the convolved image, which correspond to the edges in the image, are detected.
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(a)

(b)

(c)

i
i
Y

(d)

Figure 2.13: (a) 2-D Gaussian filter with o = 1.
with o = 1. (d) LG with o = 2.

(b) 2-D Gaussian filter with o = 2. (¢)LG
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Figure 2.14: (a). The bottle image. (b). The edge map from the Laplacian of Gaussian edge
detector.

There are four possible cases of zerorcrossings: {+,—}, {+,0,—}, {—,+}, and {—,0,+}. In
order to avoid weak zerocrossings due to noise, a threshold is applied to the slope of zero-
crossings. The slope of zerocrossing {a, —b} is |a + b|. The algorithm for the LG operator is
summarized in Figure 2.11. The results obtained by this operator are shown in Figure 2.14.

2.11 Properties of Gaussian

The Gaussian has nice properties such as scaling, separability, and symmetry which can be
exploited in order to obtain an efficient implementation. In this section, we will discuss these
properties.

2.11.1 Scaling

The Gaussian of standard deviation o, when convolved with itself, yields a larger Gaussian of
standard deviation v/2¢. That is, if an image has been filtered with a Gaussian at a certain
spread ¢ and if the same image must be filtered with a larger Gaussian with spread /20,
then, instead of filtering the image with the larger Gaussian, the previous result can just be
filtered with the same filter of spread ¢ to obtain the image filtered with /2. Thus, the
total number of operations for filtering the image by Gaussian of ¢ and /2 o will be equal
to 2no. However, without scaling, the number of operations will approximately be equal to
2.4 n o. This produces a significant reduction in computations like the scale-space where
operators of multiple sizes are applied to the same image.

The scaling property also holds in two dimensions. However, the second derivative of
Gaussian in one dimension and the Laplacian of Gaussian in two dimensions do not possess
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this scaling property. It is possible to obtain the effect of applying bigger operators by re-
peatedly applying the smaller operators to the image. First apply the second derivative of
the Gaussian operator of size o to the image and then apply the Gaussian of size o to the
output. The result will be equivalent to the output obtained by applying the second deriva-
tive of the Gaussian operator of size v/20. We state and prove the following propositions
related to the scaling property of Gaussian.

Proposition 1 Consider a Gaussian ¢°(x) of standard deviation o. The convolution of this
Gausstan with itself yields another Gaussian, gﬁg, with standard deviation \/20.

Proof:

9°(x) * ¢°(z) = / e e 2 dy (2.35)

—(27% 422 —2n2)

= /Oo e 22 dpy (2.36)

(\/5—7) g2

= / e 202 102 dp (2.37)

= \/;0'6;%22 (2.38)
= \/Eagﬁg(aj) O (2.39)

Proposition 2 Consider a second derivative of Gaussian gt (x) of standard deviation a and
a Gaussian ¢°(z) of standard deviation b. The convolution of these two functions resulls in

a second derivative of Gaussian A?gY* +° (z) of standard deviation v/a* + b2.
Proof:
By definition we have:

$2

A’g'(x) + g'(x) = (1 = 5)g"(z) * ¢ (2). (2.40)

Taking the Fourier transform of the right hand side we get:

2

(1 —=)g%x) * ¢b(x) —— V2r(iw)*exp™ \/%exp > ) (2.41)

o2
— V2r(V2r(iw)? eXp(_w/ S ). (2.42)

Now, taking the inverse Fourier transform of the right hand side we get:

1’2 1’2 NP ER Y
1—)gz)*¢"(z) = V2r(l - ——)gvV¥ " (1), 2.43
(1 =) (@) xg'(x) = Vin( wm)?) (z) (2.43)
g;r(w) * gb(aj) = v 27ng1‘a2+b2 (QZ)D (244)
When a = b = o, the result will be the second derivative of Gaussian operator of spread

V2o,
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Iterations |a=1.b=1|a=1b=2|a=1,6=3|a=2,b=3
1 1.4 2.2 3.1 3.6
2 1.7 3.0 4.3 4.7
3 2.0 3.6 5.3 5.6
4 2.2 4.1 6.0 6.3
5 2.4 4.6 6.8 7.0
6 2.6 5.0 7.4 7.6
7 2.8 5.4 8.0 8.2
8 3.0 5.7 8.5 8.7
9 3.1 6.0 9.0 9.2
10 3.3 6.4 9.5 9.7
11 3.5 6.7 10.0 10.2

Figure 2.15: Successive Operator Sizes.

Iterations | a =1,6=2.2 | a=1,b=3.5
1 2 5
2 3 6
3 4 7
4 8
5 9
6 10

Figure 2.16: Successive Operator Sizes.

In a particular implementation, values of @ and b can be chosen so as to suit the required
range of values of the operator. The value of b is important, since the successive operator
sizes depend on it. In order to give the reader an idea about how the size of the operator
increases depending on the initial values of a and b, we have tabulated a few cases in Figure
2.15.

In Figure 2.16, we show one of the possible schemes for achieving the operator sizes of
the range 2,3,4.,5,...,10. In this scheme, we have used two sets of initial values of ¢ and b.
The first four sizes of the operator are achieved by using the values from the second column,
while the remaining sizes are obtained from the third column.

2.11.2 Separability

A two-dimensional Gaussian filter can be separated into two one-dimensional Gaussians,
one along the = direction and the other along the y direction. Therefore, the Gaussian
filter can be applied to an image by first convolving with a one-dimensional Gaussian along
each row and then convolving the result again with a one-dimensional Gaussian along each
column (as shown in Figure 2.18.b). Each one-dimensional convolution with an operator
of m pixels requires m multiplications per pixel. Hence, two one-dimensional convolutions
require 2m multiplications, which is a significant improvement over the m? multiplications
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needed for a two-dimensional convolution. Unfortunately, the L.G operator is not separable
into two single dimensional operators, because the Laplacian is not separable, even though
the Gaussian is. We give an algorithm to decompose the two-dimensional LG convolution
into four one-dimensional convolutions. This scheme requires 4m multiplications. For a

large m, 4m multiplications are less than m?

multiplications. Therefore, the number of
multiplications is significantly reduced for larger images. The separability of LG is proved

in the following proposition.

Proposition 3 The Laplacian of Gaussian can be writlen as follows:

Ngley) = gz o)+ ole) + glo) + 5 9le) (2.45)

Proof:

The above can be shown easily by using Fourier Transform theory. Let
g(x)  —  G(w),

denote a Fourier Transform pair. Since the two terms in equation 2.45 are symmetric in
and vy, let us compute the first term only. The second term can be found from the first by
replacing x with y and y with z. Assume that G(w;) and G(wq) are the Fourier transforms
of Gaussians g(z) and ¢(y) respectively. By using the convolution property of the Fourier
transform we can write:

9o) * oly) o Glon) . (i) ) (2.16)
— G(wr,wq) . (—éwQ)Q, (2.47)
— (—iw2)2 - Glwr,ws), (2.48)

where, G/(wq,wq) is the Fourier Transform of Gaussian g(x,y). Now, by taking the inverse
Fourier Transform of the right hand side we get:

d .
a—y2g($7y) — (_W2)2 - Gwr,wa).

By comparing pairs 2.48 and 2.11.2 we have,

g(z) * a%g(y) = %g(fﬂ,y)-

Similarly, by replacing = by y, and y by x in the above equation we have:

gly) * %g(fﬂ) = %g(l’,y)-

Finally summing the above two equation we get:

? N ? Y
g(x) * a—ng(y)Jrg(y) * @g(l’) = a—ng(fC,y)Jr@g(fﬂ,y)—A 9(z,y).

Which is exactly equation 2.45. O
We can summarize the algorithm for the decomposition of the operator in Figure 2.17.
Refer to Figure 2.18.a for a block diagram.
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Convolve the image with a second derivative of Gaussian mask (g,,(y)) along each

column.

Convolve the resultant image from step (1) by a Gaussian mask (¢g(z)) along each row.
Call the resultant image I”.

Convolve the original image with a Gaussian mask (¢g(y)) along each column.

. Convolve the resultant image from step (3) by a second derivative of Gaussian mask

(gz(2)) along each row. Call the resultant image Y.

Add /* and V.

Figure 2.17: Decomposition of L.G operator into four one dimensional convolutions.

tions.

1(x,y)

Image

I(x,y)

Image

— WX
ayy(y) ] AZ gix.y) * 1(xy)

a(y) — OXX(X)

@

9«  — )

(b)

Figure 2.18: Separability. (a) 2-D convolution with LG can be decomposed into four 1-D
convolutions. (b) 2-D convolution with Gaussian can be decomposed into two 1-D convolu-
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2.11.3 Symmetry

The Gaussian is symmetric around the origin, i.e., g(x) = g(—=z) for any . This property
can be used to reduce the number of multiplications as follows: Assume that the operator
of size 5 is to be applied to the input sequence X7, X,, X3, Xy, X5, X¢, ...., X, in order
to get the output sequence Yy, Ys, Vg, .... For instance, the equation for the computation of
Ys is

Y5 = woXqi + Xy + weXs + wsXy + wyXs.

Due to the symmetry, wo = w4 and w; = ws. The convolution equation can be simplified as:
Ys = wo(X1 + X5)+wi(Xe + Xi) + w0 Xs.

Utilizing symmetry, we reduce the number of multiplications from 5n to 3n to compute
all the Y; elements, where n is the total number of elements. In general, when using the
property of symmetry, we only have to perform (# of weights/2 4+ 1) % n multiplications
which is a significant reduction from (# of weights ) * n.

2.12 Canny’s Edge Detector

Canny [3, 2] has proposed an edge operator which is the sum of four complex exponentials
and can be approximated by the first derivative of a Gaussian. He assumed that edge
detection is performed by convolving the noisy image with a function f(z) and by marking
edges at the maxima in the output of this convolution. Canny specifies three performance
criteria on the output of this operator.

1. Good detection. There should be a low probability of failing to mark edge points, and
low probability of falsely marking non-edge points. Since both these probabilities are
functions of the output signal to noise ratio, this criterion corresponds to maximizing
signal to noise ratio.

2. Good localization. The points marked as edges by the operator should be as close as
possible to the center of the true edge.

3. Only one response to a single edge. When two nearby operators respond to the same
edge, one of them must be considered a false edge.

For the localization criteria Canny uses the inverse of the distance between the true
edge and the edge marked by the operator. For the distance measure he uses the standard
deviation in the position of the maximum of the operator output. He found out that (1) and
(2) are conflicting and that there is a trade-off or uncertainty principle between them. Broad
operators have a good signal-to-noise ratio but poor localization and vice-versa. Canny uses
the product of two criteria to combine them in a meaningful way. He then finds f(x), which
maximizes this product.

Canny arrives at the solution for f(z), which is the difference-of-boxes operator which
was proposed by Rosenfeld and Thurston [21]. Next he uses the third criterion to eliminate
the multiple responses. He adds the requirement that the function f will not have too many
responses to a single step edge in the vicinity of the step. He limits the number of peaks
in the response so that there will be a low probability of declaring more than one edge. He
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1. Compute the gradient of image f(z,y) by convolving it with the first derivative of
Gaussian in x and y directions.

f$(x7y):f(x7y)*(§) 677 (2.49)
Feoy) = fl,y) « (1) 5 (2.50)

2. Perform non-maxima suppression on the gradient magnitude.

3. Apply hysteresis thresholding to the non-maxima suppressed magnitude. Scan the
image from left-right, top-bottom. If the gradient magnitude at the pixel is above the
high threshold, declare that as an edge point. Then recursively look at its neighbors
(4 connected, or 8 connected). If the gradient magnitude is above the low threshold,
declare that as an edge point.

Figure 2.19: Steps in Canny’s edge detector.

tries to make the distance between peaks in the noise response approximate to the width of
the response of the operator to a single step. This width is about the same as the operator
width.

Besides the derivation of a “closed form” for an optimal edge detector, Canny has also
used the Stochastic Optimization method to derive the optimal edge operator. The opti-
mization algorithm is essentially a hill-climbing search over the space of possible filters. It
proceeds by continuously iterating through the following steps:

1. Create a noisy edge by adding Gaussian random numbers to the sampled values of a
step edge.

2. Convolve the filter with this edge, and evaluate the response.

3. Perturb the filter coefficients by a small amount.

4. Convolve this new filter with the edge, and evaluate the new response.
5. Change the filter based on the effects of the perturbation in (3).

The implementation of Canny’s operator involves the following steps. After the image has
been convolved with a symmetric Gaussian, the edge direction is estimated from the gradient
of the smoothed image intensity surface. The gradient magnitude is then non-maxima sup-
pressed in that direction. The algorithm sets thresholds based on local estimates of image
noise. [t makes use of two thresholds to deal with the problem of streaking.

The implementation of Canny’s operator is shown in Figure 2.19. The results obtained
with this operator are shown in Figure 2.20.
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Figure 2.20: (a). The bottle image. (b). The edge map from the Canny edge detector.

2.13 Scale Space

So far we have assumed the value of ¢ in the Gaussian based edge detectors is known. The
important problem is how to determine the appropriate value of ¢ in a given image. The
answer to this question is not straightforward. This has been a active area of research, and
the problems remain to be unsolved in the general sense.

When Marr and Hildreth first proposed the LG operator, they suggested four different
values of o, which are 0 = 1,2,4,8. Their edge detector was motivated by the neurophys-
iological findings about the human vision. It has been reported that in human vision, four
sizes of cells similar to LG operator exist. Their sizes can be approximated by the above four
o values. Each LG operator can be considered a band pass filter tuned to some frequency.
The idea is to use four filters to cover the whole spectrum of frequencies.

As soon as the multiple values of ¢ are used in edge detection, the important question
arises: how do you combine four edge maps? Marr and Hildreth put forward the spatial
coincidence assumplion, which states “The zerocrossings that coincide over several scales
are physically significant.” However, this criterion, which was never justified, runs into
problem very easily.

In 1983, Witkin [25] wrote a very influential paper, in which he introduced scale space.
Since then, scale space has been a hot topic in lower level computer vision. Witkin argued
that since there is no rationale to select any finite number of operator sizes, the appropriate
way is to employ a whole spectrum of operator sizes. When zerocrossings in the 1-D function
detected at the continuum of scales are plotted in # — ¢ space, they form contours. This
x — o space was termed scale space. The interesting thing about scale space is that instead of
treating a zerocrossing at one scale as a single point, now we can treat each edge point as a
contour in the scale space. These contours in the scale space have some nice properties. For
instance, the contours are always open at the bottom (low o), and closed at the top (high
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o), like arches. Therefore, in going from the low scale (o) to the high scale, the zerocrossing
may disappear, but they are never created.
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2.14 Exercises

1. Consider the image f given in the following. Assume that it is to be convolved with
the mask m, and the result is to be put into image g.

f1 (2 |3 |4 |5 [f6 | {7
f8 (19 | f10 | f11 | f12 | f13 | f14

f15 | f16 | 17 | {18 | {19 | 20 | £21 ml | m2 | m3
22 | £23 | 124 | £25 | £26 | £27 | 128 m4 | m5 | m6
29 | £30 | £31 | £32 | £33 | 134 | 135 m7 | m8 | m9

{36 | £37 | £38 | {39 | {40 | {41 | {42
f43 | 144 | 145 | {46 | {47 | 148 | 149

gl | g2 | g3 |gd |gdb |gb |g7
g8 | g9 |glo|gll|gl2|gl3|gld
gl | gl6 | gl7 | g18 | g19 | g20 | g21
g22 | g23 | g24 | g25 | g26 | g27 | g28
g29 | g30 | g31 | g32 | g33 | g34 | g35
g36 | g37 | g38 | g39 | g40 | g4l | g42
g43 | gd44 | g4b | g46 | g47 | g48 | g49

Compute the following:
g9, ¢10, ¢32, and ¢42.

2. Write a C code for convolving f with m. Hint: You can do it by four do loops.
3. Derive an expression for the Laplacian of Gaussian A2g given in equation 2.34.

4. Generate the mask for 255 x A%g, when ¢ = 1. Truncate all mask values to the nearest
integers.

5. Generate the mask for 255 x A%g, when o = 1.5. Truncate all mask values to the
nearest integers.

6. Show that Laplacian A*f = f,, + f,, is also given by A%f = f; + f/, where f} is

n
defined as second derivative of f in the direction #, and f! is the second derivative in
the direction perpendicular to 6.

7. Consider a bi-cubic polynomial defined in equation 2.13.

(a) Derive equations 2.14 and 2.15.

(b) Apply the substitution of variables © = psinf, y = pcos in equation 2.13 to
change f(z,y) into fs(p), and show that fy(p) is given by equation 2.18.

8. Consider a second order polynomial:

flz,y) = k1 + ke + ksy + kax? + ksy® + kexy.
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Compute masks for kq, ko, k3, k4, ks, k¢ using least squares fit. You can use a 3 x 3
window around each pixel in the image.

Show that gradient magnitude is rotation invariant. Let that gradient at point (z,y)
is given by (fs, fy). Assume that the object is rotated around Z axis, the point (z,y)
moves to point (z',y").

VEE+ L2 =LA+ 1

What is the computational complexity of Canny’s edge detector and Laplacian of
Gaussian edge detector. First identify main steps in each edge detector, then compute
the complexity for each individual step.
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11. Complete the following table related to three edge detectors we have discussed.

ITEM

Laplacian of Gaussian

Canny’s Operator

Hralick’s Operator

Filtering

Differentiation

Detection

Complexity

Comments
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Chapter 3

Region Segmentation

3.1 Introduction

In this chapter we will learn about the segmentation of images into regions '. This is a
complementary approach to the edge detection methods we learned in the last chapter. In
edge detection we segment an image by identifying the boundaries of objects. The boundaries
are the locations where the intensity is changing. In the region based approach, we will
identify regions occupied by the objects. Here, we will group pixels which are similar in
some region property. The first part of this chapter deals with seed segmentation. In seed
segmentation a crude segmentation of image is obtained based on the gray level distribution
and connectivity of pixels. However, seed segmentation might result in too many small
regions due to noise and other factors. In the second part of this chapter, we will discuss
some methods for region growing. These methods will be used to merge small adjacent
regions into larger ones that represent the objects more closely.

3.2 Definition of Segmentation

A segmentation of an image f(z,y) is a partition of f(x,y) (as shown in Figure 3.1 ) into
sub 1mages Ry, Ry, ..., R, such that the following constraints are satisfied:

1. U, Ri = f(z,y).
2. RiNR =¢,i#].

3. Each subimage satisfies a predicate or set of predicates. Some examples are:

All pixels in any subimage R; must have the same grey level.
- All pixels in any subimage R; must not differ by more than AX grey levels.

All pixels in any subimage R; must not differ by more than AX from the mean

grey level of the region.

The standard deviation of gray levels in any subimage R; must be small.

1©1992 Mubarak Shah 53
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RO

Figure 3.1: Image segmentation.

3.3 Simple Segmentation

In the simple cases where f(x,y) contains one object, the grey level image can be converted
into a corresponding binary image B(z,y). In this binary image the object pixels will be 1’s
and the background pixels will be 0’s. To determine a binary image we need to use some

threshold T', as follows:

1 if f(z,y) < T

0 otherwise

Bl - { (31)

Some variations of the above case include the use of two thresholds, T} and Ty; or even

a range of thresholds, Z = {11, Ty, ..., T;}.

B L ifTy < flx,y) < Ty
B(z,y) = { 0 otherwise

Ble.y) = {1 if f(z,y) € Z (3.3)

0 otherwise

(3.2)

3.3.1 Thresholds and Histograms

The distribution of gray levels can be used to determine the threshold used in binary images.
A histogram graphs the number of pixels in an image with a particular gray level as a
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255 | 255 | 100 | 100 [ 100 | 255 | s |
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5 1

(a) (b)

Figure 3.2: (a) Simple synthetic image with one object. (b) Histogram of image shown in

(a).

function of the image of gray levels. For a synthetic image this histogram will contain distinct
spikes. In Figure 3.2.a a simple 6 x 6 image with one object is shown. The pixel gray levels
corresponding to the object are 100, and the pixels corresponding to the background are 255.
The histogram of this image is shown in Figure 3.2.b. Because this histogram has two spikes,
it 1s called bimodal. The histogram of a real image may not contain clear spikes, instead it
may consist of peaks and valleys as shown in Figure 3.3. Real images rarely contain step
edges. The gray levels at the edges changes gradually from background to foreground. This
results in peaks and valleys in the histogram.

Objects with approximately the same range of gray levels form a class. The histogram
of an image will have a peak for each class of objects and one large peak corresponding
to the background. To distinguish between k distinct classes of objects, we must choose k
thresholds, each lying between two peaks. Figure 3.4.a shows an image consisting of three

(@ ®)

Figure 3.3: (a)-(b) Examples of bimodal histograms.
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255 | 255 | 235 | 255 | 255 | 235 | 255 | 20 s T
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(a) (b)

Figure 3.4: (a) Image consisting of three objects. (b) Histogram of image shown in (a).

objects, and the corresponding histogram is shown in Figure 3.4.b. There are four spikes,
three corresponding to objects, and one corresponding to the background. Three binary
images can be generated using thresholds as follows:

1 o< fzy) < T
Bi(z,y) = { 0 otherwise
1 ifTy < flx,y) < Ty

0 otherwise

By(z,y) :{

1 ifTy < f(x,y) < Ts

0 otherwise

Bs(z,y) :{

One important thing to note about the histogram is that it can only distinguish between
classes of objects. It does not contain any spatial information. Therefore a half black and
half white image, chess board image with alternate black and white blocks of equal number,
and image of random black and white dots of equal distribution have the same histogram.

3.3.2 Peakiness Test

Histograms of a real image may contain small peaks due to noise. Therefore, not all the
peaks can be used in segmentation. Before histogram peaks can be used in segmentation,
we need to determine genuine peaks which correspond to the object regions. We will use
the peakiness test for that purpose. A peak is good peak if it is sharp and deep. A peak is
sharp if the area under it is small. We will use the ratio of area of a rectangle enclosing the
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Figure 3.5: Peakiness test. V,, V;, are the heights of valleys, W is width of peak, P is the
height of peak, NV is the number of pixels between V, and V;.

peak to the number of pixels N under a peak as the sharpness of peak (as shown in Figure
3.5). The depth of peak is the relative height of peak. In this test we will use the following
information about a peak:

1. W = width of the peak in grey level range from valley to valley.
2. P = height of the peak.
3. V., V, = the two valley points to each side of peak.

4. N = the number of pixels in the image covered by the peak.

The sharpness of a peak is defined as the ratio WLX]D. If this ratio is 1, then we have the
worst possible case; a rectangle. The smaller this ratio, the sharper the peak. The ratio of
the height of the valleys to the height of the peak 1s (V“Q%. The actual peakiness test will

be the product of these ratios:

If the peakiness is greater than some threshold, then that peak will be used for segmen-
tation.

3.4 Connected Component Algorithms

So far we have only used the gray level information for segmentation. We have not used
any spatial information of regions. As noted earlier, histograms do not give any spatial
information. In order to find a connected group of pixels in an image we need to apply
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4 81818 616
41% 14 8|*|8 6|*|6
4 81818 6|6

(a) (b) (c)

Figure 3.6: Pixel connectedness. (a) 4-connected. (b) 8-connected. (c¢) 6-connected.

1. Scan the binary image left to right, top to bottom.
2. If there is an unlabeled pixel with a value of ‘17 assign a new label to it.

3. Recursively check the neighbors of the pixel in step 2 and assign the same label if they
are unlabeled with a value of ‘1’.

4. Stop when all the pixels of value ‘1’ have been labeled.

Figure 3.7: Recursive Connected Component Algorithm.

a connected component algorithm. There are three possible degrees of connectedness, as
shown in Figure 3.6. In four connectedness, a pixel is considered to be connected to four of
its immediate neighbors (left, right, up, and down), because these pixels are at a distance one.
In 8-connectedness the diagonal elements are also considered. Therefore, a pixel is considered
to be connected to all its eight neighbors as shown in Figure 3.6.b. In the discrete domain it
is not appropriate to use the Euclidean distance. The Euclidean distance between the center
pixel and diagonal pixel is v/2. In images, only integer pixels are valid. Therefore, other
distancess, like the chessboard distance, are used. The chessboard distance is defined as:

Der((x1,y1)(22,y2)) = maz(|zy — 2o, [y1 — y2]). (3.4)

According to this distance all eight neighbors of the central pixel are at distance 1. Therefore
they are considered connected. We can also use 6-connected as shown in Figure 3.6.c. In
6-connected any two diagonal elements are considered connected.

We will describe in the next two subsections two algorithms: recursive and sequential for
finding connected components in an image.

3.4.1 Recursive Algorithm

The recursive algorithm given in Figure 3.7 works well and 1s easy to implement. The problem
is that it is recursive. This algorithm, when run on a small computer with a limited stack,
may easily run into stack overflow, which would have to be taken care of by the programmer.
For a 512 x 512 image with a quarter million pixels, the recursive algorithm may have several
thousand recursive calls.
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1. Scan the binary image left to right, top to bottom.

2. If an unlabeled pixel has a value of '1’, assign a new label to it according to the following

rules:

0 0 0

01 0 L L 1 L L

L L L L

01 0 L M1 oM p Bet =M.

3. Determine equivalence classes of labels.

4. In the second pass, assign the same label to all elements in an equivalence class.

Figure 3.8: Sequential Connected Component Algorithm.

1. Compute the histogram of a given image.

2. Smooth the histogram by averaging to remove small peaks.
3. Identify candidate peaks and valleys in the histogram.

4. Detect good peaks by applying peakiness test.

5. Segment the image using thresholds at the valleys.

6. Apply connected component algorithm.

Figure 3.9: Steps in segmentation using histogram.

3.4.2 Sequential Algorithm

The sequential algorithm is a two pass algorithm which labels the regions according to
specific patterns (see Figure 3.8). The first pass scans the binary image and assigns any
unlabeled pixel a new label. In the assignment of these labels the labels of neighbor-
ing pixels are considered. During the second pass the labels of pixels are changed to
the labels of their equivalence class. Assume that at the end of the first pass we ended
up with labels ‘a’ through ‘I, and the following labels were determined as to be equal:
(a,b), (I,k), (¢, f), (a,9), (bye), (4,1), (h,[), and (¢,k). Then we will have the following
equivalence classes: (a,b,e,g),(c, f,h),(7,7). During the second pass the labels b, e, and ¢
will be changed to a. Similarly the labels f and & will be changed to ¢, and label 7 will be
changed to .

3.5 Seed Segmentation

Now we can summarize various steps in the seed segmentation algorithm as shown in Figure
3.9. In the first step the histogram of an image is computed. The histogram may contain
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some small peaks due to noise and uneven illumination. During the second step the histogram
is smoothed to remove these small peaks. In principle, any of the filters discussed in the
last chapter can be used here. In most cases, simple averaging over 3 elements of the
histogram works reasonably well. Sometimes, more noisy histograms can be smoothed by
smoothing several times. In the third step, candidate peaks and valleys are identified simply
by detecting local maxima and minima in the histogram. Next the good peaks are detected
by using the peakiness test. In the fifth step the image is segmented using thresholds at the
valleys between peaks. The last step is used to determine a set of connected components in
the image. The results for region segmentation are shown in Figure 3.10.

3.6 Region Growing

Segmentation using gray level distribution and connectivity of pixels can be considered seed
segmentation. This segmentation needs to be refined using information about the shape
of the regions and the semantics of regions. This segmentation might also yield too many
small regions, which need to be merged with neighboring regions. We will discuss several
algorithms for region growing.

3.6.1 Split and Merge Algorithm

This 1s the most simple algorithm for region growing. In this algorithm the regions are
sequentially split and merged using some predicate until nothing can be merged or split (as
shown in Figure 3.11). The algorithm is outlined in Figure 3.13. This algorithm can be
demonstrated by a simple image shown in Figure 3.12. In this example, we will use a very
simple predicate: the gray levels of pixels in a region are the same. To start with, the whole
image is considered as one region. Since all the pixels in the image do not have the same
gray levels, the image is split into 4 quadrants, as shown in Figure 3.12.a. Next, an attempt
is made to merge any two adjacent regions. But none of the quadrants satisfy the predicate,
therefore there is no merge. Next, all three quadrants except the upper left quadrant are
splitted into four smaller regions each (see Figure 3.12.b). At this stage three sub-quadrants
can be merged into one large region. Two sub-quadrants at the lower part of the image
are further split as shown in Figure 3.12.c. Finally, during the next merge operation the
remaining sub-quadrants are merged with the large region. At this stage all regions satisfy
the predicate; and no further merging or splitting is done.

3.6.2 Phagocyte Algorithm

This algorithm is also called boundary melting. The idea is to remove (melt) the weak
boundaries between two adjacent regions, hence merging the two regions. The phagocyte
heuristic is used for the boundary between the two regions. In this algorithm, the crack edges
between two regions as shown in Figure 3.15.a are used. The edges can easily be represented
using the super grid ((2n + 1)(2n + 1)) as shown in Figure 3.15.b. The strength of the edge
between point A in region Ry and point B in region R, is given by the absolute difference
of gray levels:

S(A,B) = |f(z1,y1) — f(22,2)]
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Intensity Histogram

Intensity Histogram

Pixel
Pixel

Intensity Histogram

(i)

Figure 3.10: Histogram smoothing process using peakiness threshold = 0.1, ave size = 5.
(a) Original image. (b) Histogram for image in (a), peaks = 93, peaks after peakiness test
= 18. (c) Histogram after one smoothing, peaks = 54, peaks after peakiness test = 7. (d)
Histogram after two smoothings, peaks = 21, peaks after peakiness test = 7. (e) Histogram
after three smoothings, peaks = 11, peaks after peakiness test = 4. (f) Regions from peak 1

(0..40). (g) Regions from peak 2 (40..116). (h) Regions from peak 3 (116..243). (i) Regions
from peak 4 (243..255).
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P(R) = false
—_—
P(R1 U R2) = true
—_—

Figure 3.11: Split and merge. (a) If P(R) = false, a region R is split into four subregions
R1, Ry, R3, and Ry. (b) If P(Ry U Ry) = true, two regions, Ry and Ry, are merged.

(©

(d)

Figure 3.12: Demonstration of split and merge algorithm.
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1. Split region R into four adjacent regions (quadrants) if Predicate(R) = false.
2. Merge any two adjacent regions Ry and Ry if Predicate( Ry U Ry) = true.

3. Stop when no further merging and splitting are possible.

Figure 3.13: Split and Merge Algorithm.

1. Merge two regions if

W (Boundary)
mm(Pl, PQ)

>T, 0<7;,<1

where P; is the perimeter of region Ry, and P, is the perimeter of region Rj.
2. Merge regions if
W (Boundary)

Total number of points on the border

>T; 0<T3<1

Figure 3.14: Phagocyte Algorithm.

The edge is declared weak if the S(A, B) is below some threshold.
1 if S(A,B) < T}

0 otherwise

W(A,B) = {

The weakness of the whole boundary is the sum of weaknesses of all boundary points.

W (Boundary) = »_ W(A,B)

VA,B

The algorithm is outlined in Figure 3.14. Two heuristics are used here: weakness and
phagocyte. The weakness heuristic is straightforward. If the ratio of weak boundary points
to the total number of boundary points between any two adjacent regions is above some
threshold, these two regions are merged. However, this heuristic tends to overmerge regions.
Therefore, we need a phagocyte heuristic, which takes into account the shape of the resultant
region. The results for region segmentation are shown in Figure 3.16.

3.6.3 Likelihood Ratio Test

In this method we use gray level distribution of regions to decide if they should be merged.
This method is probabilistic in nature. We consider two hypothesis H; and H,.

Hy: There are two regions.

Hy: There is one region.

We will assume that in each region, the gray level distribution can be approximated by
a Gaussian distribution. That is, if a pixel is selected at random, the probability that it has
gray level X is given by
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Figure 3.15: Region merging using Phagocyte algorithm. (a) Two regions Ry and Ry. (b)
Super grid ((2n + 1) x (2n + 1)).

\of

e
(a) (b) ()

Figure 3.16: (a). The bottle image. (b). Seed Segmentation. (c). After region merging.
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Figure 3.17: Region merging using Likelihood ratio algorithm.

1 _(z—3)?

P(z) =

2ro

where z is the mean gray level and o is the standard deviation.

Assume that region R; contains my pixels, and 77 and oy are respectively the mean
and standard deviation of region R; as shown in Figure 3.17. Also assume that the gray
levels are independent of each other. Then the probability of region R; having gray levels
(x1,22,...,%m,) is given by:

1 m
Pz, 29, 2my) = ( ) e 2. (3.5)

210

Similarly, we can compute the probabilities for region R,, and region R = Ry U Ry as

follows:
1 M2 my
P(Zmy41y Ty 42y oo s Trngtmy) = ( 271'0) e 2 (3.6)
2
1 mq+ma my+ma
P(x1,@a, oy Ty e oy Ty 1y Ty 42y« o s Longtmy ) = ( ) e 2 (3.7)

2mog
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Now, the probabilities for H; and H; are given as:

1 L my 1
P(Hy) = P(x1,22,. .. %m,) X P(Tm, 41, Tmyaas s Ty gy ) = ( e x (
2moq 2moy
1 mitmy
P(Hy) = P(x1,22, oy Tmyye oo Tty T2y -« o s Ty bmy) = ( e” T 2
2mog

The Likelihood ratio is:

P(Hy) (o)™

=By T ey e

The regions are merged if LH < T.
are

3.7 Region Adjacency Graph

Region adjacency graphs (RAGs) are very useful data structures for region merging algo-
rithms. In this graph, regions are represented as nodes and adjacent regions are connected
by an arc between the nodes. Consider a simple image consisting of five regions 1,2, 3,4,
and 5 as shown in Figure 3.18.a. The pixels corresponding to a region are denoted by its
region numbers. Assume that some predicate is used to merge regions. First, regions 4 and
3 are merged. The image with updated regions is shown in Figure 3.18.b. Next region 3
is merged with region 2 as shown in Figure 3.18.c. Finally, region 2 is merged with region
1. In this process, the region labels are changed multiple times. For instance he label of
pixels belonging to region 4 is first changed to 3 then to 2, and finally to 1. In this example
the image is very small, and each region consists of few pixels. But, it is not uncommon to
have thousands of pixels in each region. In this case, the changing of labels require more
overhead. Therefore, instead of changing region labels of each pixel during the merging, we
will apply the merge operation on a RAG. The RAGs corresponding to Figure 3.18.a-d are
shown in Figure 3.18.e-h. When region 4 is merged with the region 3, the node 4 in the RAG
is removed, and the arcs are adjusted to reflect the new image as shown in Figure 3.18.f. It
is also recorded that the pixel labels 3 and 4 are equivalent. The merge operations for the
image shown in Figure 3.18.a are shown in 3.18.h with the equivalent labels and the initial
image shown in Figure 3.18.a can be used to get the final segmented image similar to one
shown in Figure 3.18.d.

3.8 Issues in Region Growing

1. The number of thresholds used in the algorithm. Some algorithms use one or two
thresholds, but others use several thresholds.

2. The order of merging is very important. The final segmentation will depend heavily
on the order in which regions are merged.

3. Seed segmentation is also important. If the segmentation to start with is reasonable,
the region growing will improve it further by using the shape and semantic information

)G

(3.9)
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Figure 3.18: Region adjacency graphs (RAGs).
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of regions. However, if the initial segmentation is very poor, the region growing will
not improve it.

As we have said, edge detection and region segmentation are complementary processes.
In principle, we can determine regions from the edges of the object, and edges from regions.
However, there are several differences between these two types of segmentation.

1. Region segmentation results in closed boundaries, while the boundaries obtained by
edge detection are not necessarily closed.

2. Edge detection is mostly local. Region segmentation is more global.

3. Region segmentation can be improved by using multi-spectral images (e.g. color im-
ages), however there is not much an advantage in using multi-spectral images in edge
detection.

4. The position of a boundary (edges) is localized in edge detection, but not necessarily
in region segmentation.

3.9 Geometrical Properties of Rgions

Once the scene is segmented into regions, we can determine the geometrical propertiese of
regions which can be used in the object recognition. In this section, we will describe few
important properties. We will assume that the region is represented by a m x n binary
image, B(z,y).

Area: Area or size of the regions is a total number of pixels occupied by the region. It is
given by:

m n

A=>> B(z,y) (3.10)

r=0y=0

Centroid: The centriod is like the center of an arbritrary shaped region, and it can be used
to represent the location of a region. Centroid, (z,y) is given by:

ZZL:O ZZ:O .TL‘B(:E, y)

7= o , (3.11)
- Yo EZ:AO yB(z, y)' (3.12)

Moments: The first moments, M}, M;, and the second moments, M2, M;, are respectively
given as:

ML =33 Bla,y) (3.13)

=0 y=0

M= 3 yB(z,y) (3.14)

=0 y=0
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=3 #*Bla.y) (3.15)

=0 y=0

=SSy B(e.y) (3.16)

z=0y=0

Perimeter: The perimeter of a region is sum of its border pixels. A pixel which has at least
one pixel in its neighborhood from the background is called a border pixel.

Compactness Compactness, C, is defined as follows:

A
C = 4ﬂ-ﬁ’ (3.17)
where A is the area of a region, and P is the perimeter of the region. The most compact
region is a circle, with compactness equal to 1 (The area of a circle of radius R is 7 R?

and the perimeter is 27 ). The compactness of a square shape is 7.

Orientation: The orientation, @, of a region can be computed by determining the axis of
second moment of inertia (see Figure 3.19). It can be determined by minimizing the
following expression:

E = //(:L' sin @ — ycos 6 4 p)° Bz, y)dzdy (3.18)

It can be shown (see Exercises) that minimzing above expression results into:

b

sin 20 = + , (3.19)
b2+ (a — 0)2

cos260 = £+ i , (3.20)
b+ (a — 0)2

where,
a = //a:’ZB z,y)dz'dy’, (3.21)
b = 2// y'B(z,y)dz'dy’, (3.22)

c = //y B(z,y)dz'dy’, (3.23)
' =x—z,and y’ =y — y. For the discrete domain, a, b, and ¢ are given as follows:

a = Y > a*B(z,y) — Az?, (3.24)
b = 2> > ayB(z,y) — Azy, (3.25)
c = > > y*B(z.y) — Ay’ (3.26)
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— (Xo, Yo)

Figure 3.19: Determining orientation of an arbitrary region.

3.10 Exercises

. Outline the sequential algorithm using eight connectedness.
. Devise algorithm for determining equivalence classes.
. Derive equations: 3.5, 3.6, and 3.7.

. Determine the computational complexity of sequential and recursive connected com-

ponent algorithms.

. Show that the equation of a line shown in Figure 3.19 is given by

zsinf —ycosf + p=0. (3.27)

Verify that the closest point on the line to the origin is at (—psin 8, +pcos @), and the
parametric equation for a point (zg,yo) on the line is given by:

rg = —psinf + scosb, (3.28)
Yo = +pcosf + ssinb, (3.29)

where s is as shown in Figure 3.19.

. The distance, r, between a point (z,y) and the line is given by

2

r? = (z = 20)" + (y — y0)". (3.30)

Substitute zg and yo from equations 3.28 and 3.29 in the above equation, and differn-
tiate the resultant equation with respect to s, and set the equation to zero. Show that
now s is given by:

s =xzcosf + ysinb. (3.31)




3.10. EXERCISES 71

10.

Substitute 3.31 in equations 3.28 and 3.29, and show that

r? = (xsinf — ycosh + p)

2

Show that differntiating equation 3.18 with respect to p and equating the result to zero
results:

A(zsinf —ycosf + p) =0, (3.32)
where (Z,7) is the centriod, A is area.
Using #' = = — &, and y' = y — y, show that £ in equation 3.18 is now given by:
E = asin?# — bsin 0 cos 0 + ¢ cos? 0, (3.33)

where a, b, and ¢ are as defined in equations 3.21-3.23. And show that £ can also be
writtens as

1 1 1
E = 5(@ +¢) — 5(@ —¢)cos 26 — §bsin 20. (3.34)

By differntiating equation 3.34 with respect to # and equating the result to zero, show
that

b
tan 26 = , (3.35)

a—=c¢C

hence, verify equations 3.19 and 3.20.
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Chapter 4

2-D Shape

4.1 Introduction

In this chapter we will discuss several techniques for representing the shape of boundaries
and regions in a segmented image !. These representations are the abstraction of edges and
regions in a symbolic form, which will be useful in object recognition. Here, we will mainly
be dealing with grouping operations. For instance, the grouping of edge points into straight
lines, circles, ellipses, etc. For representing regions we will discuss the medial axis transform,
pyramids, and quad trees. For representing boundaries we will discuss the Hough transform,
generalized Hough transform, chain code, and shape number. Good shape representation
should be compact, complete, unambiguous, and stable.

4.2 Hough Transform

The Hough transform can be used to represent plane curves, e.g., lines, circles, and parabolas,
defined by analytical expressions. There are connections between the Hough transform and
the least squares fit. In the least squares method, an over-constraint system of equations is
used to compute the solution. Therefore, the number of equations is more than the number
of unknowns. In the Hough transform, an under-constraint system is used to compute the
solution. Therefore, the number of equations is less than the number of unknowns. There
are multiple solutions in this case. In fact, in many cases, in Hough transform a single
constraint is used to compute all possible solutions. That way each constraint votes for a
set of possible solutions. The solution which has the majority of votes is selected. There is
a third possibility, in which the number of constraints is equal to the number of unknowns.
This method is called the RANSAC (Random Sampling and Consensus) method. The main
steps in RANSAC are the following:

1. Randomly select the minimum number of constraints to estimate the solution.

2. Find the error between the estimated solution and all data points. If the error is less
than the tolerance, then quit, else go to (1).

1©1992 Mubarak Shah 73
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Figure 4.1: Fitting line using the Hough transform. (a) Points in  — y space. (b) Lines in

¢ — m space corresponding to points in x — y space. The lines intersect at a single point.

4.2.1 Straight Line

In this section we will use the Hough transform to fit the equation of a straight line to the
edge points. The equation of a line is given by:

y = mzx + c, (4.1)

where m and ¢ are the slope and y—intercept of the line. The above equation can be rewritten
as:
c=(—z)m+y.

This is the equation of a line in ¢ — m space, with slope —x and intercept y. Therefore, a
point (z,y) in the # — y space is mapped to a straight line in the ¢ — m space (see Figure
4.1). Assume that we have several edge points (x1,91), (22,92), (23,93), oy (Tn, yn) N T —y
space to which we want to fit a line. Each point in the (z,y) space maps to a line in the
¢ —m space. These lines intersect at a single point in the ¢ — m space. That point (¢é,m) is
the estimated slope and intercept of a line in = — y space. The algorithm for fitting straight
lines to the edge points using the Hough transform is given in Figure 4.2.

The parameterization of a line given in equation 4.1 has one problem. The line parallel
to y—axis has infinite slope m, which can not be represented by a computer. Another
parameterization of a line shown in Figure 4.3 is as follows:

p=zcosf +ysinb, (4.2)

where # is the angle between z-axis and a line p, drawn perpendicular from the origin to
the line being detected. In this case, § and p have finite values. Another advantage of using
this parameterization is that # can be computed from the gradient angle during the edge
detection. Therefore, instead of looping through all possible values of §, we can just use the
6 from the gradient angle. This way, computational complexity is reduced. The algorithm
for fitting line using the polar form of a straight line is given in Figure 4.4.
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1. Quantize the parameter space P[¢pin, .- - s Crnazs Momins « o v v e - Moz -

2. For each edge point (z,y) do
for (m = Munin, m < Mgz, m + +) do
c=(—z)m+y,
Ple,m] = Ple,m] + 1.

3. Find the local maxima in the parameter space.

Figure 4.2: Hough transform algorithm for fitting straight lines.

Figure 4.3: Polar form of equation of straight line.

1. Quantize the parameter space P[0in, ... ... N i s Prmaz)-

2. For each edge point (z,y) do
p==xcosf+ysinb,
PlO.p) = PIO.p 1.

3. Find the local maxima in the parameter space.

Figure 4.4: Hough transform algorithm using polar form of equation of straight line.
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1. Quantize the parameter space

P[‘rommv c oy Lomazs Yomins + + > YOomazs T'miny - - rmaz]-

2. For each edge point (z,y) do
for (2o = Zomin, o < Topmazs To + 1)
for (Yo = Yo,0in Y0 < Yomazs Yo + +)
do (z —z0)” + (y — yo)? = r*.
Plzg,y0,7] = Plzo, yo,7] + 1.

3. Find the local maxima in the parameter space.

Figure 4.5: Hough transform algorithm for fitting circle.

1. Quantize the parameter space

P[xominv <y Lomazs Yomins - -+ s Yomaes Tmin, - - - rmaI]'

2. For each edge point (z,y) do
For (r = rmin, 7 < Tmaz, 7+ +)
Tog=2 — rcosb
Yo =1y —rsinf
Plzo, yo,r] = Plzo, yo,r] + 1.

3. Find the local maxima in the parameter space.

Figure 4.6: Hough transform algorithm for fitting circle using polar form of equation of a
circle.

4.2.2 Circle

The equation of a circle centered at (xg,yo) with radius r is given by:
(& = 20)" + (y — yo)* —r* = 0. (4.3)

In this case we have three unknowns: g, yo, 7. Therefore the parameter space is three
dimensional. The algorithm for fitting circle using Hough transform is given in Figure 4.5.
The gradient angle information can be used to reduce the computational complexity in this
case also. Another parameterization of a circle is given by:

xo=2x —rcosb (4.4)

Yo =1y — rsinf (4.5)

where 6 is the gradient angle. The simplified algorithm for fitting a circle is given in Figure

4.6.
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4.3 Generalized Hough Transform

So far, the Hough transform has been used to detect shape which can be expressed analyt-
ically. However, many shapes in the real world cannot be expressed analytically. In those
cases, the generalized Hough transform can be employed to detect any arbitrary shape. The
information contained in the equation of a shape can be captured in a table called R—Table.
The first step in the generalized Hough transform is to develop this R—Table. First the
centroid of the object is determined as follows:

Xz Xy=o [z, y)x

T, = 4.6
Y f(@,y) (49)
r=n y=n

yo = Tz Zamo Sy (4.7)

Y fz,y)

where f(x,y) is a binary image, defined as follows:

| 1 if (x,y)is object pixel

Hay) = { 0 otherwise (4.8)

Next, for each edge point (z,y), the vector r = (2',y’) is determined (as shown in Figure
4.7.a) such that:

r.=x+ 2 (4.9)
yve=vy+vy (4.10)

The information about the r vectors is collected in the R—Table (as shown in Figure
4.7.b) which is indexed by the gradient angle. There is a row corresponding to each possible
value of the gradient angle in the R—Table. In the second column of this table the r vectors
with the same ¢ angle are stored.

During the recognition phase, the aim is to detect the presence of a given shape defined
by the R—Table, and identify locations where it is present. For each edge point, the gradient
angle is determined, and is used to index the R—Table. The accumulator array is incremented
by all r vectors present in the entry as follows:

r.=1x+ 2 (4.11)
yve=vy+vy (4.12)

The location of the shape is determined by identifying the local maxima in the accumulator
array Plz.,y.]. The complete algorithm is given in Figure 4.8.

This algorithm will not be able to detect the rotated and scaled version of a given object.
However, it is very important for a vision system to be able to identify the scaled, rotated,
and translated version of the object. Therefore, we will discuss how the algorithm can be
modified to achieve this.

We know that if (2/,y’) is rotated around Z—axis by an angle 6, the new coordinates
(z",y") are given by:

2’ = 2'cosh+y'sinb (4.15)
y" = —z2'sinf + y' cosb (4.16)
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D1 r%,r%,r%,...,r%n
09 T%,T%7T§,...,T%w
O3 r%,r%,r%,...,r%m
o o
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o o
G | TV Y TS, T

(a) (b)

Figure 4.7: Generalized Hough transform. (a) An arbitrary shape with centroid at (z.,y.).
The tangent angle at point (z,y) is ¢, and 2’ and y’ are respectively the distance in z and
y directions from (z,y) point to the centroid of the object. (b) R—Table. The first column
contains the gradient angles, and the second column contains the (z',y’) vectors.

2. For each edge point (z,y) do

compute ¢(z,y)
for each table entry for ¢ do

r.=x+ 2 (4.13)
ye=y +y’ (4.14)

P[xm yC] = P[mm yC] + L.

3. Find the local maxima in the parameter space.

Figure 4.8: Generalized Hough transform algorithm.
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Similarly, the scaled and rotated version of (2',y’) is given by:

" = sy(z'cosf + y'sinb) (4.17)
y" = s,(—2'sinf + y' cos §) (4.18)

Substituting the above equations in equations 4.9-4.10 we get:

r. = x+.(z'cosf+y'sinh) (4.19)
ye = y+s,(—2'sinf+ 1y cosb) (4.20)

Now, if the equations 4.13-4.14 are replaced by the above equations in the generalized Hough
transform algorithm given in Figure 4.8, the rotated and scaled version of shape can be
detected.

4.4 Shape Number

Chain code is a very simple technique for representing shape of contour. In chain code,
each directed line segmented is assigned a code. Two possible codes are shown in Figure
4.9.a-b. In Figure 4.9.a the directions are quantized into four possible directions: 0, 90,
180, and 270 degrees. The corresponding codes for these directions are: 0, 1, 2 and 3. The
chain code of a contour is the concatenation of codes of individual line segments. The chain
code of a contour shown in Figure 4.9.c is given in Figure 4.9.d. Note that this chain code
is dependent upon the start point, and on the orientation of the contour. It is desirable
to have code which is translation, rotation, and start point independent. If the contour is
rotated by m x 90, where m is an integer, then a constant m is effectively added to the code
of each line segment. Since the derivative of a constant is zero, the chain code can be made
rotation invariant by simply using the first difference of the chain code instead. The code
can be made invariant to the start point by normalizing the first difference such that if the
code is interpreted as an integer, it is the minimum possible integer. The normalized first
difference of a chain code is called shape number. The number of digits in a shape number
is called the order of shape number. Some examples of shape number of order 4, 6, and 8
are shown in Figure 4.10.

Finding the shape number of an arbitrary object oriented in an arbitrary direction in-
volves several steps. In order to get an accurate shape number with fewer digits, the contour
needs to be re-sampled with a coarser grid which is aligned with the main axes of the object.
This will minimize the quantization error. One possible way to achieve this is to impose a
grid whose major and minor axes are parallel to the major and minor axis of the rectangle en-
closing the object, and the eccentricity of the grid and enclosing rectangle are approximately
the same. The complete algorithm is given in Figure 4.11.
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@ (b)

chain code 001003333212322111

first difference 301303000331130300

shapenumber 000331130300301303

© (d)

Figure 4.9: Shape number. (a)-(b) Two possible chain codes. (¢) A contour with a chain
code. (d) Shape number of contour shown in (c).

4.5 Pyramids

Pyramid is very useful data structure for representing image regions. Pyramid is built by
using multiple copies of the image. Each level in the pyramid is i of the size of the previous
level. The lowest level in the pyramid is of the highest resolution, and the highest level is of
the lowest resolution.

See Figure 4.12 for an example.

4.5.1 Gaussian Pyramid

In Gaussian pyramid the lowest level, gg, is the original image I. The level, ¢;, is computed
by weighted averaging of values in level g;—1 in a 5 x 5 window as follows:

E E (m,n)gi-1(2¢ + m,2j + n). (4.21)

m=—2n=-—2

This is shown graphically in Figure 4.13 for one dimensional case. Note that the density
of nodes in level [ in one dimension (two dimensions) is half ( one fourth) the nodes at level

[ — 1. Therefore, this process is called REDUC'E operation:
g1 = REDUCFE][g,—4]. (4.22)
The mask w(m,n) approximates Gaussian, and is separable, that is:
w(m,n) = w(m)w(n). (4.23)

The one dimensional mask, w(m), is generated using three constraints.
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0 0o o0
3 1 1 3
> 2 2
chain code 0123 chain code 003221
first different 1111 first different 303303
shapenumber 1711 shapenumber 033033
@ (b)
0 0 0
3
1 3 1 o
1 3 1 3
2 2 2 2
chain code 00332211 chain code 03032211
first different 30303030 first different 33133030
shape number 03030303 shape number 03033133

(© (d)

Figure 4.10: Some examples of shape number. (a) Order 4 shape number. (b) Order 6 shape
number. (c)-(d) Order 8 shape number.

1. Find eccentricity:

(a) Find two points at the maximum distance from each other. The line joining those
points is the major axis.

(b) The line perpendicular to the major axis is the minor axis.

(c¢) Eccentricity is given by the ratio of the major and minor axis of the enclosing

rectangle of the object.

2. Impose a grid structure such that the eccentricity of the grid is equal to the eccentricity
of enclosing rectangle.

3. Find the shape number.

Figure 4.11: Algorithm for computing shape number of an arbitrary object.
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Figure 4.12: Pyramid.
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Figure 4.13: A one-dimensional graphic representation of the process which generates a

Gaussian pyramid.
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1. The mask should be symmetric, that is
w(r) = w(—t) fore=0,1,2 (4.24)

2. The sum of mask should be 1. Let w(0) = a, w(1) = w(—1) = b, and w(2) = w(-2) =
c. Then

a+2b+2c=1. (4.25)

3. All nodes at a given level must contribute the same total weight to nodes at the next

higher level,

a4+ 2¢ = 2b. (4.26)

Using the above three constraints, we have:

w(0) = a, (4.27)
w(—1) =w(l) = i, (4.28)
B(—2) = mm:i—%. (4.29)

The EXPAND operation essentially expands an image of size M + 1 into an image of
size 2M + 1:

gin = EXPANDIg,,._1], (4.30)

which can be computed using the formula similar to 4.21 as follows:

Z_P J—4q
glnzj Z Z gln 1( 2 9 )7 (431)

p=—29=-2

where ¢;,, 1s the image at level [ obtained by applying EXPAND to ¢; n times. Here only
Z—Qm’ and —n

terms for which are integers are included. One time expansion of the image at

level [ can be obtained as:

malii)= % % w a7 5, (4.32)

p=—2q9=-2

Gaussian pyramid for Hamburg taxi image is shown in Figure 4.14.
The Laplacian pyramid, L, is generated by computing the difference between images at
successive levels of pyramid:

Ll =g — EXPAND[gl_H] (433)

Each node in image L; represents the result of applying a difference of two Gaussian functions
to the original image. The difference of Gaussian is equivalent to the Laplacian of Gaussian
operator commonly used in edge detection.

Hierarchical Discrete Correlation, HDC, is similar to REDUC'E operation, except that
the density of nodes remains fixed at each level. This is shown graphically in Figure 4.15.
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Figure 4.14: Gaussian pyramid for taxi image with a = 0.4.

0000000000000 0

00 o 0000000

Figure 4.15: A one-dimensional graphic representation of the HDC process.
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1. I =logZ.

2. RefWindow= m x m window from reference pyramid centered at the feature from level
(1)

3. InputWindow = 2m x 2m window from input at the level [ (whole image at level [).

4. Find the best match of RefWindow in the InputWindow, let it be at (Xpest, Yoest)-

5. if [ = 0 then stop, else [ =1 — 1.

6. InputWindow=2m x 2m, window at level [ centered at location corresponding

(Xbest7 1/best)-
7. RefWindow= m x m window centered at the feature from level (/).

8. goto step 4.

Figure 4.16: Algorithm for correlation using pyramids.

4.5.2 Correlation Using Pyramids

Pyramids can be used for several purposes, for example, they can be used for efficiently
computing the correlation. Correlation is used in template matching, where a given pattern
of a gray level window is passed through the image to find the best match. This can be
achieved without using pyramids. Assume that we have to find a match of a 16 x 16 window
in a 256 x 256 image. For this we need (256 — 15) x (256 — 15) = 58,081 tests. However,
it can be shown that using pyramid the tests can be reduced to only 4 x (16 + 1)2 = 1,156,
which is a big improvement.

The algorithm for correlation using pyramids is given in Figure 4.16. In this algorithm,
first m x m window from the highest level (1) of the pyramid is used to find the best match
in the 2m x 2m window in the input pyramid at the same level. Assume that the best match
is at (Xpest, Yiest). Now, m x m window from the next level (I — 1) of the reference pyramid
is used to find the best match in the 2m x 2m window in the input pyramid centerd around
(Xbest, Yoest) at the same level. This process continues until the best match is found at the
lowest level of pyramid.

4.6 Quad Trees

Quad tree is a useful data strcuture to represent a region. At every node of a quad tree
there can be maximum of four descendants. There are three types of descendants: BLACK,
WHITE and GRAY. The BLACK node correspond to a region which is uniformly black,
and the WHITE note correspond to a region which is uniformly white. While GRAY node
corresponds to a region which is a mixture of black and white pixels.

It is easy to generate a quad tree from a pyramid of an image. The algorithm for
generating quad tree is given in the Figure 4.17. Three levels of pyramid of an image, and
its corresponding quad tree is shown in Figure 4.18.
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1. If type of Pyramid is BLACK or WHITE then return.

else

a) Recursively find the quad tree of south-east quadrant.

(
(

)
b) Recursively find the quad tree of south-west quadrant.
(c) Recursively find the quad tree of north-east quadrant.

(d) Recursively find the quad tree of north-west quadrant.

2. Retrun.

Figure 4.17: Algorithm for computing quad tree using pyramid.

9 g g
9 WHITE

B sBLAx

Figure 4.18: Quad tree generation.
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Figure 4.19: Medial axis transform. The points on the medial axis are the centers of the
maximal circular neighborhoods totally contained in the shape. Note that the centers of the
smaller circles (shown dotted) do not constitute the medial axis fo this shape.

1. Tteratively compute f* as follows:

[H(a,y) = [2(,y) + min(f* (p,q)) (4.34)
Y(p, q) such that distance((z,y),(p,q)) < 1.

2. Medial axis is given by all points (z,y) such that:

FE,y) > fHp,q), (4.35)

Y(p, q) such that distance((z,y),(p,q)) < 1.

Figure 4.20: Iterative algorithm for computing medial axis transform.

4.7 Medial Axis Transform

The medial axis transform is used to represent the shape of regions. This is basically a skele-
ton of the region. One way to define the medial axis is as follows: the points on the medial
axis are the centers of the maximal circular neighborhoods totally contained in the shape
(see Figure 4.19). An iterative algorithm for computing the medial axis transform is given
in Figure 4.20. In this algorithm, it is assumed that the binary image f°(x,y) containing
the shape of the region is given. The f° is used to iterartively compute f', f2, f3,..., f*.
The first step of the algorithm terminates when f*~! and f* are the same. In the second
step the points which are local maxima in f* are identified as the medial axis. The medial
axis transform of region shown in Figure 4.22.a, is shown in Figure 4.22.c. The various steps
involved in computing its medial axis are shown in Figure 4.22.b-c. The points consisting of
the medial axis are shown in bold face in Figure 4.22.c.

An iterative algorithm for computing the shape from the medial axis is given in Figure
4.21. If the inverse medial axis transform is applied to the medial axis shown in Figure
4.22.c, the original shape can be recovered. The various steps in this process are shown in

Figure 4.23.
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1. Iteratively compute ¢* as follows:

g"! otherwise

k-1 _ e k=1 _
Hany) = { max[0, (maxg*~(p,q)) — 1] if g*~' =0 (4.36)
Y(p, ¢q) such that distance((z,y),(p,q)) < 1.

Figure 4.21: Iterative algorithm for inverse medial axis transform.

J O A O I O N A I 111141 111 (1]1]1
I O A O N A I 112121221 1121212 12]1
I A O A O A — (112122 ]2]1 —{ 1123321
Ty 1rj1j1)1 112121221 1121212 12]1
Ty 1rj1}11 111141 111 (1]1]1
(a) (b) (c)

Figure 4.22: Medial axis transform. (a) Rectangular shape (f°(z,y)). The background
pixels, which are not shown, are all ‘0”. (b) intermediate step (f*(z,y)). (c¢) f*(z,y). The
points in Medial axis shown in boldface.

1 1 1 1]1 1111 ]1]1

2 2 1[2(2]2]2]1 1[2(2]2]2]1

33 — [ [2]3]3]2 —1 |2 [3[3]2]1

2 2 1[2(2]2]2]1 1[2(2]2]2]1

1 1 1 11 1|1 |11 [1]1
(a) (b) (c)

Figure 4.23: Inverse medial axis transform. (a) Medial axis (¢°(z,y)). (b) Intermediate step
(¢'(z,y)). (c) Original shape (g*(z,y)).

X =

Figure 4.24: Some examples of medial axis transform.
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4.8 Moravec’s Interest Operator

Moravec’s interest operator is a very useful feature point detector, and is widely used in
motion and stereo. This operator identifies points (in fact small windows) in the image which
are interesting in the gray levels. First, for each 4 x 4 overlapping window, four directional
variances in gray levels (horizontal, vertical, diagonal, and anti-diagonal) denoted by V4, V,,
Vi and V, are determined as follow (see Figure 4.25.a-d):

Vi(z,y) = ;;(P(x—l—i,y—l—j) —Plz+i+1,y+j)) (4.37)
V(z,y) = é;(P(x—l—i,y—l—j) — Plz4iy+j+1))° (4.38)
Va(z,y) = ]Z;;(P(a: +iy+7)—Ple+i+ly+j+1)° (4.39)
Va(z,y) = ]Z;g(P(a: +iy+i)—Pla+i—ly+i+1)" (4.40)

Next, array V(z,y) is computed as follows:
V(z,y) = min(Vi(z,y), Vi(z,y), Valz,y), Va(z,y)). (4.41)

A 4 x 4 window centered at pixel (z,y) is declared interesting if it is a local maxima in a
12 x 12 neighborhood (see Figure 4.25.e). The array I(z,y) stores the interesting points in
the image:

0 otherwise.

I(e.y) :{ 1 ifV(z,y) > V(p,q), V(p.q) € N(z,y) (1.42)

The resulst for Moravec’s interest operator are shown in Figure 4.26.
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Poo | Por | Poz | Poa Poo | Po1| Poz| Pos
Pig | Pir|Pis|Pis Pio| Paa| Pha| Pus
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(e)

Figure 4.25: Moravec’s interest operator. (a) Gray level variance in horizontal direction.
(b) Gray level variance in vertical direction. (¢) Gray level variance in diagonal direction.
(d) Gray level variance in anti-diagonal direction. (e) 25 overlapping windows in a 12 x 12

neighborhood.
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Figure 4.26: Results for Moravec interest operator.

(a) Gray level image. (b) Moravec

interest points (total 52 points) superimposed on (a).

4.9 Exercises

1.

Devise a scheme for detecting parabolas y — yo = a(x — x0)°, centered at (xq,yo) using
Hough Transform. Use the gradient information to reduce the computations. What is
the computational complexity of your algorithm?

. Devise a scheme for detecting ellipses that are known to be oriented so that a principal

axis is parallel to the x axis using Hough Transform. Use the gradient information to
reduce the computations. What is the computational complexity of your algorithm?

If the generalized Hough transform is used for detecting cirele, how the R-Table will
look like?

How would you distinguish an arc from a complete circle using the Generalized Hough
transform?

Consider an arbitrary shape object in an image. The gradient angle at each edge pixel
is given in the following array. The centroid of the object is shown by *.

90 | 45 90 | 90 | 90
180 90 | 135 0
225 0
180 * 0
180 0
135 0
180 225 | 270 | 270
180 | 270 | 270 | 270

(a) Prepare the R-Table for this object to be used in the Generalized Hough Trans-
form.
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(b) Assume now that the some image has been given to you, whose gradient magnitude
is given in the above table. Run through the various steps in the Generalized
Hough Transform; identify the location of the object (X.,Y.) using the R-Table
you generated in the part (a).

6. This problem will give you some experience with correlation matching using pyramids.
Below are given two pyramids: reference and input. For simplicity, these pyramids
have only two levels. Fach level of the pyramid is built by taking alternate rows and
columns from the previous level. A 2 x 2 pattern consisting of a’s is to be identified in
the input image. Assume that the center of an even-sized window is at the upper left
corner pixel. Also, assume that each 2 x 2 block at a given level of pyramid is mapped
to 1 x 1 block at the next level, in order to map the location of a window at one level
to the corresponding location in the next level.

Reference Pyramid

Input Pyramid

(a) How many comparisons are needed to locate the pattern in the input image with-
out using pyramid?

(b) Run through various steps in the correlation matching using pyramids. For each
level identify the window being searched, and the location of the correct match.

(c) How many comparisons are needed to locate the pattern in the input image using
pyramid?

d) If the pattern in the reference image is displaced to some other arbitrary location

p g p y )

will you still be able to locate the pattern in the input image using steps in (b).

(e) If the pattern in the input image is displaced to some other arbitrary location,
will you still be able to locate the pattern in the input image using steps in (b).

(f) Can you generalize the result in (a) considering m x m pattern, and n X n image,
where both m,n are even numbers.
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(g) Can you generalize the result in (c) considering m x m pattern, and n x n image,
where both m,n are even numbers.

. Outline recursive algorithm for computing an area of a region from the quad tree.

. Compute the Medial Azis of the following shape using 8-neighborhood. Please show

all the necessary steps.

[en] New) oo} Nev) Nevl Boo) Nev) Nevl] e} Noo)
[en) Nen ) N B e e N e B sl N e
Ol === === =D
fen ) I N e e e e e Y e
Ol == === = == O
[en) Nen ) e B e e N e B sl e
[en] New) oo} Nev) Nevl Boo) Nev) Nevl] e} Noo)

. Using the medial axis computed above recover the original shape back by applying the

inverse medial axis transform.

Assume that an object has the following chain-code (8-connected), compute its shape
number. 076666553321212
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Chapter 5

Motion

5.1 Introduction

L In

So far we have been dealing with a single image of a static scene taken by a fixed camera
this chapter, we will be dealing with a sequence of images taken at different time intervals.
The motion of objects in 3-D induces the 2-D motion in the image plane. That motion is
called optical flow. In this chapter, we will discuss several methods for computing optical
flow. The optical flow can be used to compute 3-D motion, i.e. translation and rotation, and
3-D shape. We will also describe one general method for computing 3-D information from

optical flow.

5.2 Optical Flow

5.2.1 Horn and Schunck Method

Let 3-D function f(z,y,t), where z, y are the spatial coordinates, and ¢ is time, denote the
image sequence. Then, f(x1,y1,t1) is the gray level at location x1,y; at time ¢;. Assume
that with a small change dz, dy, and dt in z, y, and ¢ there is no change in the gray levels,
that is:

[,y t) = fz + de,y + dy, L + di). (5.1)
By finding the Taylor series expansion around x,y,t of the right hand side we get:

0 0 0
flast) = Foay )+ hda+ Sy + S (5.2

The above equation can be simplified as:

foda + f,dy + fodt =0, (5.3)

_ 9f _ af
where f, = 3=, f, = 5y

shown in Figure 5.1 to the image sequence f(z,y,1).

and f; = %. These derivatives can be computed by applying masks

1©1992 Mubarak Shah 95
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@ (b) ©

Figure 5.1: Masks for computing spatial and temporal derivatives. Note that the center of

mask is at the lowere right pixel. (a) Masks for f,, (b) Masks for f,, and (c) Masks for f;.

Dividing each term in the above equation by dt we get:

frut fyo+ [ =0, (5.4)

where u = % and v = % is the optical flow. There are two unknowns, v and v, in the above

dt? dt
equation, we cannot solve this equation easily. The above equation can be rewritten as:

S I i
I

This is the equation of a straight line in u — v space. There are several possible solutions of

(5.5)

this equation, the solutions can lie anywhere on the line shown in Figure 5.2. Let (@, ) be
the correct solution. This vector can be divided into two components, one along the straight
line denoted by p, and another perpendicular to the line denoted by d. It is easy to show by

using trigonometric identities that d = J;t —. Therefore, knowing the derivatives f., f,

ny
and f; we can only compute the normal compoilent, d, of optical flow. However, the parallel
component, p, can not be computed directly from the derivatives.

One of the first approaches for computing optical flow was proposed by Horn and Schunck
[9]. Horn and Schunck proposed to estimate (u,v) such that following error function, £, is

minimized:

E(a:, y) = (fa:u + fyv + ft)2 + )\(UIQ + uy2 + UIZ + UyQ), (56)

where the first term is the optical flow constraint from equation 5.4, and the second term
corresponds to the smoothness of optical flow. For the correct (true) optical flow the first
term should be close to zero, or the square of the first term should be small. Since the motion
of most real world objects is smooth, the second term enforces the smoothness constraint.
Differentiating £ with respect to u and v, and equating it to zero we get:

ok
oK
5y = (feut fyo+ fi)fy + Avws £ vy) = 0. (5.8)
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V
NN\
f (uv)
o K
fy

fx

Figure 5.2: Optical flow constraint line in u — v space. d is the length of perpendicular from
the origin to the line, « is the angle the perpendicular makes with the z-axis. (4,0) is one
possible solution. This optical flow vector, (#,v), can be divided into two components: p,
which is along the constraint line, and d which is perpendicular to the constraint line.

Substituting A%u = uyy + uy,, and A?v = v,, + v, we get:

(fou+ fyv + fi) fo + MA) = 0, (5.9)
(fou+ fyo + fi) fy + A(A%0) = 0. (5.10)

Let A%u = u — ug,, where u,, is the average of the v component of optical flow taken over
the four nearest neighbors of a pixel. Similarly let A*v = v — v,,. Then,

(fwu—l_fyv—l_ft)fw—l_)‘(u_uau) :07 (511)
(fl‘u—l_fyv—l_ft)fy—l_)‘(v_vau) :0 (512)
These two equations can now be solved for (u,v) as:
P
= Ugv — Jz 77 1
U=t — fop (5.13)
P
U:vav_fyﬁa (514)

where P = fotiay + fyvaw + fr, and D = XA+ f,.* 4 f,°. The iterative algorithm for computing
optical flow using the above equations is given in Figure 5.3. The results for Horn and
Schunck’s algorithm are shown in Figure 5.4.

5.2.2 Schunck Method

Recently, Schunck [22] proposed a simple method for computing optical flow. In this method
multiple constraints are used to compute the flow. Since the gray level at a single pixel gives
only one constraint, the optical flow can lie anywhere on the straight line determined by the
spatial and temporal derivatives. If the second constraint from the neighboring pixel is used
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1. £k=0.
2. Initialize u* and v* to zero.

3. Until some error measure is satisfied, do:

P
k k-1
e 5.15
u uav f D ( )
P
k k-1
= — fy—=- 5.16
v vau fyD ( )

Figure 5.3: Horn and Schunck algorithm for computing optical flow.

then the correct optical flow can be determined by computing the intersection of two lines
represented by the constraints. In general, it is desirable to employ multiple constraints, not
just two constraints. Schunck uses eight constraints obtained from points around a 3 x 3
neighborhood of a pixel. That results in eight intersections of lines. If the measurements are
noise free, and all pixels in a 3 x 3 neighborhood belong to the same moving object, then,
in principle, all eight lines will intersect at a single point, which is the correct optical flow.
But, due to noise, or if some points lie on the boundary of the moving object, all eight lines
may not intersect at the same point. The intersections may be spread out. However, the
intersections may cluster around some true solution. Therefore, Schunck uses the tightest
cluster of the intersection consisting of at least half the intersections to determine the optical
flow.
It is easier to consider the polar form of the optical flow equation (equation 5.5) as

d = pcos(a — ), (5.17)

ft
fa2+fy?

and o = arctan ;—y is the angle the perpendicular makes with the z-axis (see Figure 5.2), p
is the speed, and [ is the direction of the optical flow vector. Now for points 1 and 2 will

give the following two optical flow equations:

where d = is the length of a perpendicular from the origin to the constraint line,

dy = pcos(aq — 3), (5.18)
dy = pcos(ay — f3). (5.19)
These two lines intersect at a point, which is at a distance by (line segment AB) from the

the intersection of perpendicular, dy, drawn from the origin to the constraint line (as shown
in Figure 5.5). It is easy to show that by given by

_dy — dy cos(ag — )

by (5.20)

sin(ag — aq)

Similarly, the intersection with lines corresponding to points 3,4,....9 can be computed.
These intersections are likely to cluster around some point. If the center position of the
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Figure 5.4: Results for Horn and Schunck algorithm for displacement of 1 pixel and A = 4.
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a2 a1
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Figure 5.5: Intersection of two optical flow constraint lines.

cluster is l;, then the optical flow is given by:

po= Vdi?+ b2, (5.21)

A

B = al—l—arctan(di). (5.22)

1

5.3 Token Based Optical Flow

Given two frames taken at different time instants and m points in each frame, the corre-
spondence problem deals with with a mapping of a point in one frame to another point in
the second frame such that no two points map onto the same point. The correspondence
is required in many computer vision algorithms, and there exist a number of approaches
to this problem. A slightly simplified form of this problem is encountered in stereo, where
the tokens from the left image are to be matched to those in the right image to compute
the disparity. The disparity is proportional to the depth of the objects the tokens belong
to in the three dimensional world. The problem in stereo is simplified because the possible
matches can only occur along an epipolar line. In the case when the objects are moving and
frames are taken at different time intervals, the possible matches can occur anywhere in the
next frame, unlike stereo where the frames are separated in space not in time.

The correspondence problem is combinatorially explosive. For instance, with 2 frames
and m points in each frame, the number of possible mappings is m!. To give an idea, the
number of possible matches for m = 5 is given as (5!) = 120. There are two interesting points
to be noted here. First, trying all possible mappings will be almost impossible even for a
moderate number of frames and points. Second, even if we know all possible trajectories,
how do we determine which set is the correct one?

In order to cope with the complexity of this problem, researchers have used a number of
constraints. The constraints include mazximum velocity, small velocity change or smoothness
of motion, common motion, consistent match, rigidity, etc (see Figure 5.6). The maximum
velocity constraint implies that if the bound on the velocity is known a priori, given a
position of a point in one frame one can limit the search for a possible match in the next
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Figure 5.6: Constraints used in motion correspondence. (a) Maximum velocity, (b) Small ve-
locity changes, (¢) common motion, (d) consistent match, (e) model, (f) proximal uniformity
constraint.
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frame to a small neighborhood of the position in the present frame. The small velocity
change heuristic assumes that the direction and speed of the motion cannot change by a
large amount, therefore one can eliminate some false matches. This constraint essentially
leads to smooth motion. Common motion constrains the motion of the points in a small
neighborhood to be similar, and the consistent match forces only one match for one point.

The rigidity and smoothness of motion assumptions have received the most attention.
Rigidity implies that the objects in the three-dimensional world are rigid, therefore the
Euclidean distance between any two point on the rigid object will remain unchanged in the
next frame. In fact, Ullman et al attempted to show that smoothness follows from rigidity,
that is, if the objects are rigid their underlying motion will be smooth, but not necessarily
vice versa.

An important issue in the correspondence problem is to convert the above qualitative
heuristics into quantitative expressions, which become the cost functions. Then the aim is
to search for mapping which minimizes one of these functions. Enumeration of all possible
sets, and picking the one with the least cost is not possible. Therefore, one needs to use
a good approximation algorithm to obtain a sub-optimal solution that is very close to the
optimum solution.

5.3.1 Barnard and Thompson Method

Barnard and Thompson [1] proposed an iterative algorithm for computing motion correspon-
dence or optical flow. They use confidence measure F;; to denote the probability of token 7 in
frame one matches with the token j in frame two. The initial probabilities PZ% are computed
using gray level differences in small window around the location of corresponding tokens.

1

c—l—wij

0 _
iy

(5.23)

where w;; = ydv=w  gdr=w (f1(xs + dz,y; + dy) — fa(x; + dz,y; + dy))®. The subsequent

dy=—w Ledo=—w
iterations are defined as:

pn

pro= Y (5.24)
2; Pl

pn __ n—1 n—1

P = P (A4 Bg ), (5.25)

it o= XY P (5.26)
k {

where k is a neighbor of 7, [ is a neighbor of j, such that ||(z;,y;) — (2&, y%)|| £ Dmaz, and
[|Vij = V|| € Vinax (Vij is the optical flow of i-the token when it mataches with j-th token in
next frame). The demonstration of Barnard and Thompson’s algorithm is shown in Figure
5.7. There are three points (: = 1,2 and 3) in frame one, and three points (j = 1,2, and 3)
as shown in Figure 5.7.a. The possible data structure for this example is shown in Figure
5.7.b. There is one list corresponding to each point. The first element in the list is the
coordinates of a point in the first frames, and the subsequent elements in the list are the
possible optical flows with corresponding probabilities. For instance, the first element in the
first list is (4,10) which are the coordinates of the first point in the first frame, the second
element in the list, ((5,0),.7), represents the match of the first element in the first frame
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with the first element in the second frame. The optical flow in this case is (5,0) with the
initial probability .7. In Figure 5.7.c the matrices q?j, Pl

1
i, and P are shown.

5.4 Motion Correspondence Using Multiple Frames

We are given a sequence of n frames denoted by f1, f%,.... f*. We assume that the important
tokens in each frame have already been identified using a corner detector or an interest
operator. Therefore, each frame f* is a set of points. Corresponding to the sth point in the
jth frame, we have its 2-D coordinates denoted by a vector X;. Our aim is to come up with
a one to one onto correspondence ®* between points of kth frame and (k + 1)th frame.

It is not unrealistic to assume that in space objects move small distances in a small time
interval, and their corresponding motion is smooth or uniform. If the time interval between
frames is small, then the 2-D projection of 3-D motion will also be small and smooth.
Therefore, the location of a point in the next frame will be in the prozimity of the location
in the previous frame. Smoothness of the motion implies minimum change in velocity of the
point, that is the object can not change its direction and speed instantaneously. Hence the
objects will follow a prozimal uniform path. We can establish correspondence by minimizing
the following prozimal uniformity function 6, which will prefer the proximal uniform path.

| XETXF - XPXT | | XX |

S(XF1 XF XEH) = S N
! ' Y12 |l Xﬁ_ngk—l(I) - Xék—l(x)Xfﬂ I e ] Xék—l(r_)Xfﬂ |
where 1 < p.g,r <m;2<k<m—1;9=""(p);
XEXHF1 is the vector from point ¢ in frame k to the point r in frame k 4 1; and [|.X|
denotes the magnitude of the vector X.
The proximal uniformity function obeys the following criteria.

e Speed doesn’t change much between two successive frames.
e Direction doesn’t change much between two successive frames.
e Displacement of a point between two successive frames tends to be small.

In proximal uniformity function the first term represents a relative change in velocity,
while the second term denotes a the relative displacement. The second term forces the
proximal matches, while the first term leads to smooth and uniform trajectories. Notice that
the numerator in both terms represents an absolute quantity, for example the numerator of
the first term represents a absolute change in velocity of a point ¢ in frame k. While, the
denominators denote the sum of absolute quantities for all possible matches. Hence, the
ratio gives the relative measure of quantities. Since, a change in velocity is a vector quantity,
the magnitude in the first term incorporates both the change in speed and direction.

In this formulation it is assumed that ®', an initial correspondence is to be known. ®*
is determined such that 5(X§_1,X5, XF+1) is minimized. For a smoothness based method
to be meaningful, the initial correspondence should be known. Given the correct initial
correspondence, the algorithm will correctly grow the trajectories. Applying the smoothness
constraint alone without knowing any detail about the initial movement of the points may
in many cases lead to false trajectory sets.
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Figure 5.7: Demonstration of Baranard-Thompson algorithm with A = .3, B =3, V.. =
2, Dpar = 4.
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Algorithm A
1. For k=2ton—1do
(a) Construct M an (m*m) matrix, with the points from kth frame along the rows and

points from (k + 1)th frame along the columns. Let M[i,j] = §(X 1 XFXIH),
when ®*~1(p) = .

(b) for a =1 to m do

i. Identify the minimum element [¢, ;] in each row ¢ of M.
ii. Compute priority matriz B, such that B[, L] = 37, ., M[i,j] +
ke i Mk, L] for each .
iii. Select [2,1;] pair with highest priority value Bl[i,[], and make ®*(z) = I,.

iv. Mask row : and column /; from M.

Figure 5.8: Motion correspondence using multiple frames.

A non-iterative greedy algorithm A is given in Figure 5.8. This algorithm assigns corre-
spondence of points in one frame with the points in next frame, keeping the overall proximal
smoothness function as close to the minimum as possible in addition to being fair to each
individual assignment.

In this algorithm when the minimum along the rows is considered it could happen that
more than one minimum lies along the same column j. That is, more than one point in
frame k competes for point j in the (k + 1)th frame. To get a one to one onto mapping, we
should choose only one of these. However, this scheme should not just choose the minimum
possible combination quantitatively, but it should prefer a combination where each individual
correspondence is fairly good. The correspondence from frame k to k& + 1 involves m points.
The minimum correspondence could be very favorable to some (m — 1) points and not
favorable for the mth point. The algorithm should prefer a correspondence which is equally
favorable to all points; at the same time we should not end up with a very high proximity
path uniformity function. The algorithm was designed to take care of these conditions.

The rationale behind the priority measure is that if [¢, 7] is not assigned, any other element
along the ith row or jth column can get assigned. Assuming they are all equally probable,
their average value is a good measure for selecting the order of assignments. The algorithm
should choose the one with the highest priority measure and assign that first. Priority
measure is a rough estimate of the alternate assignment to [z, j].

This algorithm has the nice property that it will pick the least cost assignment it there
are just two points in the frame. Consider the matrix M, with M[1,1] = 0.6 , M[1,2] =
0.3, M[2,1] = 0.7, and M][2,2] = 0.2. Minimum along row 1 is element [1,2] with value
0.3, while the minimum along row 2 is element [2,2] with value 0.2. Therefore, B[1,2] =
(0.6 +0.2) = 0.8, and BJ[2,2] = (0.7 +0.3) = 1.0. Now, B[2,2] > BJ[l,2], hence we choose
correspondence (2,2) first. Then, mask row 2 and column 1 with a high value. Next we pick
the only assignment possible [1, 1]. For this assignment 6 = M[1,1]+M|2,2] = 0.64+0.2 = 0.8,
which is the least possible for this configuration.

The results obtained with this algorithm are shown in Figure 5.9.
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(2)

Figure 5.9: Trajectory generation. (a)-(c) Image sequence — selected images shown. (d)-(f)
Respective fingertip points for images. (g) Fingertip trajectories.
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5.5 Structure From Motion

The structure from motion (SFM) method in computer vision infers the physical properties
of the objects present in the scene, such as their three-dimensional structure and motion,
given a series of two-dimensional projections. There has been significant interest over the last
decade in the Computer Vision community in the structure from motion theory. There are
two classes of methods for SFM: the displacement methods and the instantenous methods.
In the displacement methods, three dimensional coordinates of points on the moving objects
and their three dimensional motion is recovered from a sequence of frames. This problem
is formulated in terms of systems of non-linear (linear) equations given 2-D positions of
moving points among frames. Interesting theoretical work related to the number of points
required for a solution, the uniqueness of such a solution, and the effect of noise on the
solution has been studied. In the instantaneous methods the optical flow field is used to
recover the 3-D motion and depth values. Previous approaches in this class have dealt with
the simplified problems involving some assumptions related to the motion and objects, e.g.,
the assumption of translation motion only, rotation motion only, known depth of objects,
and planar surfaces. Recently, Heeger and Jepson [7] have proposed a general method for
computing 3-D motion (rotation and translation) and depth from optical flow. Their method
first computes translation, followed by rotation, and then depth. Heeger and Jepson method
can be described as follows.

Assume that the motion of a point (X,Y,Z) lying on an object can be described by
V=-T-Gx ', where V is the 3-D velocity vector, T = (1,,T,,T,) is the translation vector,
& = (wy,wy,w,) is the rotation vector, i’ is vector from the origin to the point (X, Y, 7), and
x represents the vector cross product. The optical flow (u,v) under perspective transform
(assuming focal length =-1) is given by:

T. T

u = (—f—wy+wzy)—$(—7z—wzy+wyl’), (5.27)
T T
v = (—7y—wz$+wz)—y(—g—c%y—l—wyx). (5.28)

This equation can be written as

— —

0(z,y) = p(z,y)A(z,y)T + B(z, y)d, (529)

-1 0 =z

where p(x,y) = 1/Z(x,y), is inverse depth, A(z,y) = 0 -1 y

],and

zy —(1+4 2?2
B(w,y)z 1_|_y32/ ( —ef; _z

The matrices A and B depend only on the image position, not on the unknowns. For each
point in the image, a separate equation can be written in this form, and can be combined
together into one matrix equation as:

D Dy
| |
ap
=
Ry
_|_
vyl
&
ot
oo
S
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where  contains the image velocities for all the image points, and p contains the depths.

A([El,yl)(T) 0
A(T) = : :
0 coo Az, y,)(T)
is obtained by collecting together into a single matrix A(z,y)T for each point, and
B(xla yl)
B = :
B(z., ys)

is obtained by collecting the B(z,y) matrices, ¢ is obtained by collecting together into
one vector the unknown depths and rotational velocities, and

|
C(T)=| A(T) B
|

is obtained by placing the columns of B along the columns of A.
The least-squares estimate for translation can be used which minimizes the following
expression over all candidate translations, rotations, and depth values:
- — — 2
E(T) = 10— C(T)qll -
Minimizing this expression over all T and ¢ is equivalent to the following function over
T:
— — - 2
R(T) = ||oCH(T)II, (5.32)

where CL(T) is the orthonormal basis for the orthogonal complement of C(f)
Once T has been computed, the rotational velocity can be determined. Consider a a unit

vector J(:l’}, Y, f) such that: cﬁ(:z:,y, T)A(:l’}, y)ff = 0. Multiplying by cﬁ(:ﬁ, Y, ff) on both sides

of equation 5.29 eliminates the dependence on p(z,y);
(ﬁ(x,y,f)g(x,y) = cﬁ(m,y,f)B(;{:,y)@'.

A large number of flow vectors can be used in a least-squares estimate for w.

& (21,51, D)0(x1,51) = d'(z1,50,T)B(1,31)8 (5.33)
b= (5.34)
(s s TV (0, y0) = Ay Y, T)B(2, )3 (5.35)
or
s(x1,y1) = D(xq,y1)@ (5.36)
P (5.37)

$(Tn,yn) = D(xn,yn)d (5.38)
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where s(z,y)is 1 x 1, D(x,y) is 1 x 3. The above equations can be written as:
s = Da (5.39)

where s is n x 1 vector and D is n x 3 matrix. We can compute & by puseudo inverse method.

Finally, once the translational and rotational velocities are both known, the equations
5.27 and 5.28 can be used to solve for an unknown depth at each image point using least
squares method.
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5.6 Exercises
1. Derive equations 5.7 and 5.8.
2. Derive equation 5.17 from equation 5.5.

3. Derive equation 5.20.

4. Derive equations 5.27-5.32.



Chapter 6

Stereo and Shape From Shading

6.1 Introduction

The world is three-dimensional, but its images are two-dimensional, so one dimension is lost
during the projection process'. One important task in computer vision is to recover the
third dimension from single or multiple images. There are several cues for recovering 3-D
information from 2-D images which humans use frequently, and which are being studied in
machine vision research. These cues include stereo, shading, texture, and motion.

The recovered 3-D shape can be expressed in several ways:

e Depth Z, the distance of a point on the object,

e Surface normal (n,,n,, n,), the orientation of a vector perpendicular to the tangent
plane on the object surface,

e Surface gradient (p,q) = (g—;, g—;), the rate of change of depth in the x and y directions,

e Surface slant o, and tilt 7, such that (ng,n,,n,) = (psinocos 7, psinosint,pcoso).

In this chapter, we will discuss stereo, photometeric stereo, and shape from shading. In
stereo, two images (left and right) are used to recover 3-D shape. The image of an object
in 3-D is shifted with respect to its image in the right image. This shift, which is inversely
proportional to the 3-D, is used to recover the 3-D shape. In shape from shading, gray
level variations in a single image are used to recover 3-D shape. In photometeric stereo,
multiple images taken by different light sources are used to generate over constrained system
for computing 3-D shape.

6.2 Stereo

6.2.1 Stereo Geometry

A simple stereo geometry is shown in Figure 6.1. (' is the center of lens for the left camera,
(5 1s the center of lense for the right camera, f is the focal length, Z is the distance in the Z
direction (depth), z1 is the image coordinate in the left image, x5 is the image coordinate in

1©1992 Mubarak Shah 111
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W(xy.2)
4
ca/ B c2
i f i
X1 X2
Figure 6.1: Stereo geometry.

the right camera. It is clear from figure that the two triangles AWz 2z, and AW C1C;y are
equivalent. Therefore, we have

Z+[ _rit2,+B
Z B ’

(6.1)

fB

M)
Ty + T2

7 =

(6.2)

where z1 + x5 is the disparity. For a given stereo system, the focal length f of the camera,
and baseline B are fixed and known. If the disparity x; 4+ x5 can be computed from left
and right images, the depth Z can be determined using the above equation. Note, that the
disparity is inversely proportional to the depth. The objects close to the camera produce
large disparity, while the objects farther away form the camera produce small disparity.

6.2.2 Steps in Token Based Stereo

There are three main steps in stereo:
1. Token detection
2. Correspondence
3. Surface interpolation.

In the first step, tokens are detected in gray level image pairs. The tokens can be edges,
corners, interest points, etc. The depth is computed only at the tokens. The correspondence
step is the main step in stereo, where the tokens from the left image are matched with the
tokens in the right image. Due to the epipolar constraint, matching in stereo is limited to
only one dimension. therefore, there can be a large number of possible mappings between
left and right image tokens, the constraints are used to limit the search space. In the third
step, the depth values at the tokens are used to determine depth at the remaining pixels
through interpolation.
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Figure 6.2: Demonstration of Marr-Poggio algorithm. (a) Left image, (b) Right image, and
(c) Initial array C%(z,d).

6.2.3 Marr-Poggio Algorithm

The Marr-Poggio[15] algorithm is one of the first stereo algorithms, and it is easy to explain.
This algorithm was motivated by the human vision system. The domain of this algorithm 1is
the random dot stereogram, where each pixel in the image is randomly black or white. The
algorithm uses the following constraints.

Compatibility White dots should match with the white dots, and black dots should match
with the black dots.

Continuity The depth should be continuous, and neighboring pixels should have similar
depth.

Uniqueness One dot from the left image should match to only one dot from the right
image.

The initial correspondence, C°(z,d), is obtained using the compatibility constraint. The
continuity and uniqueness constraints are used in the later iterations. The compatibility
constraint can be enforced by applying the ezclusive nor operation between the tokens in
the left and right images. One dimensional stereo pair is shown in Figure 6.2.a-b. For
simplicity, we assume that the image size is only 5. The white dots are shown by ‘W’s’, and
the black dots are shown by ‘B’s’. In Figure 6.2.c we show the array C°(x,d), computed by
applying the compatibility constraint to the images shown in Figure 6.2.a—b.

From array C°, the arrays C1, C?%, ..., C™ are iteratively computed using the following
scheme, which enforces the continuity and uniqueness constraints.

w Dmam
: n—1¢, _ n—1¢, : : 0¢,
C"(z,d) = 1 if é C" Yz +a,d) ¢ E | C Yz ti,d+1)+C%a,d); >T (6.3)
a=—w,a#0 t=—Dmax,t7#0

0 otherwise
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1. Compute the initial correspondence using the compatibility constraint as follows:
Coz,y,d) = L(z,y) @ R(z +d,y),
where ) is the exclusive nor operation.

2. Iteratively compute C™ as follows:
Let

SUM = CrVztpy+q,d) —cS omee o on=l(p iy d i)+ 0,y d
{Zzlm—pl+|y—q|sw (tpytad = 1 i (@tiy,d+i) (2,9, d)

C"(z,y,d):{ (1) if SUM > T

otherwise

Figure 6.3: Marr-Poggio stereo algorithm.

*
* | ok | ok
I EENEE
* | ok | ok
*

Figure 6.4: Excitatory neighborhood used in Marr-Poggio algorithm.

where, D,,,, is the maximum possible disparity, € is constant, 7" is the threshold, and w is
constant. In the above scheme, the first term on the right side is called the ezcitatory term,
which computes the support a given match gets from its neighbors with the same disparity.
The second term with the minus sign is the called inhibitory term, which computes the
penalty when the continuity constraint is violated. The third term is the initial array C°,
which is added to speed up the convergence.

The Marr-Poggio algorithm for 2-D is similar to 1-D, and is given in Figure 6.3. The 2-D
excitatory neighborhood used in the implementation of the Marr-Poggio algorithm is shown
in Figure 6.4. The support from the pixels shown by ‘*” in a circle of diameter of 5 pixels
around the central pixel shown by ‘+’ is used in the excitatory term in equation 2. The
typical values for ¢, T, w respectively are 2, 4, 2.

6.2.4 Correlation Based Stereo Methods

In the token based stereo methods, the depth is computed only at token points. In order to
obtain the dense depth map it is necessary to apply the interpolation step. In the correlation
based stereo method, depth is computed at each pixel. A gray level patch around a pixel in
the left image is correlated with the corresponding pixel in the right image. The disparity
for the best match is determined. In this method the disparity map, D(z,y), is computed
as follows: Let

CR(z,y,d) = Z Z L(z + we,y+wy) X R(x+ wy + d, y+ wy)

Wp=—85 Wy=—5
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(a) (b) ()

Figure 6.5: Results for the Tomato images. (a) Left stereo gray level image. (b) Right stereo
gray level image. (c¢) A 3D plot of the estimated depth map from SSD stereo matching
algorithm. The image size is 128 by 128, the window used for SSD is 5 x 5, and the disparity
range is 12.

D(z,y) =d s.t. CR(x,y,d)is maximum for — Dpgy < d < Dpgy, (6.4)

where L(z,y) and R(x,y) are respectively the left and right images. In order to compute
a disparity at point (z,y) a (2s + 1) x (2s + 1) window of gray levels in the left image is
matched with the gray levels in the right image. The resultant disparity from all possible
disparities, d = —2,-1,0,1,2,..., 1s the one which produces the maximum correlation
value in the above equatlon In the above method the correlation value will depend on the
local changes in R(xz,y). It is better to use normalized correlation as shown below: Let

Z Z L(z + wg,y+ wy) X R(z+wy + d, y+ wy)

NCR(,L"y’d) _ We=—SWy=—8
\l Yo D (Ra+ws+dy+uy))
D(z,y) =d st. NCR(z,y,d) is mazimum for — Dpmar < d < Dpag. (6.5)

If the right image window is a scaled version of the left image window i.e. R = cL, for

constant ¢, then normalized correlation will have a maximum value of /Y > L2.
Another possibility is to use the sum of squared differences (SSD) as shown below:

SSD(z,y,d) Z Z x—}—wx,y—i—wy)—R(r—l—wx—i—d,y—}—wy))z
D(z,y) =d st. SSD(z,y,d) is minimum for — Dpay < d < Dpag. (6.6)

The normalized correlation and the SSD give similar results. The results for SSD stereo
algorithm are showing in figures 6.5, 6.6 and 6.7.
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()

Figure 6.6: Results for the Renault images. (a) Left stereo gray level image. (b) Right
stereo gray level image. (¢) A 3D plot of the estimated depth map from SSD stereo matching
algorithm. The image size is 128 by 128, the window used for SSD is 5 x 5, and the disparity

range is 9.

e
(a)

(b)

()

Figure 6.7: Results for Sandwich Renault images. (a) Left stereo gray level image. (b) Right
stereo gray level image. (c¢) A 3D plot of the estimated depth map from SSD stereo matching
algorithm. The image size is 128 by 128,the window used for SSD is 5 x 5, and the disparity

range is 13.
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6.2.5 Barnard’s Stereo Algorithm

In Barnard’s stereo approach the problem is to find an assignment of disparities, D(z,y),
such that two criteria, similar intensity and smoothness, are satisfied:

1 1

E(zy)= > > (@ +wey+w,) — Rz +we+ D(x,y),y +w, )l + M| v D(z,y)|(6.7)

wr=—1 wy=—1

where L and R are the left and right images, D(z,y) is the disparity map, the 57 operator
computes the sum of the absolute differences between disparity D(z,y) and its eight neigh-
bors, and A is a constant. For a 128 x 128 image, and a disparity range of 10 pixels, there
are 10'%3®* possible disparity assignments, which results in combinatorial explosion. Barnard
uses a simulated annealing to solve this problem. The algorithm is as follows:

1. Select a random state S.
2. Select high temperature T.
3. While T > 0.

(a) Select S’
AE « BE(S) — E(S).
(b) if AE < 0 then S « '
(c) else P« eXp_?—E, X « rand(0,1),
if X <P then S« S

(d) if no decrease in F for several iterations then lower T.

7

The results are shown in figure 6.8.

6.3 Shape From Shading

In shape from shading, given a single gray level image, the aim is to recover the light source

direction and surface shape at each pixel. Since images of most surfaces in the real world can

be approximated by Lambertian reflectance, the majority of shape from shading methods

use the Lambertian reflectance model. The important parameters in Lambertian reflectance

are albedo and illuminant directions. Commonly, the albedo is assumed to be constant.
The reflectance function for Lambertian surfaces is modeled as follows:

I(z,y) = R(p,q), (6.8)
_ L+ pps + 445 7 (6.9)
VI+p? +¢%\/1+p2+¢?
_ cos o + pcosTsino + gsinTsing (6.10)
where I(z,y) is the gray level at pixel (z,y), p = % ,q = %, Ps = %, qs = %,

7 is the tilt of the illuminant and o is the slant of the illuminant. In this model, the surface
orientation is represented by, surface gradient, (p, ¢), and illuminant is represented by slant
and tilt (7,0) (equation 6.10), or gradient (ps, ¢s) ( Equation 6.9) as shown in Figure 6.9.
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(a) (b) ()

Figure 6.8: Results for Barnard’s stereo algorithm. The inital temperature is 100, and it is
decreased every time by 10%. The value of A is 5. (a) A 3D plot of the estimated depth
map for Tomato image pairs. (b) A 3D plot of the estimated depth map for Reanult image
pairs. (¢) A 3D plot of the estimated depth map for Sandwich image pairs.

Light Source  Surface Normal
(Ps» 4s) p:4q)

Figure 6.9: Reflectance from a surface patch.
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6.3.1 Source From Shading

Most of the shape from shading algorithms require known light source directions. Since the
light source is usually assumed to be at infinity, the light source orientation is constant for
all of the surface points in the image, one image can provide enough information to estimate
the source. There are two ways to describe a light source direction: One uses a 3-D vector,
the other uses the two degrees of freedom in 3-D space — slant and tilt. If the image plane is
parallel to the X-Y plane, slant is the angle the illuminant vector makes with the Z-axis, and
tilt is the angle the image plane component of the illuminant vector makes with the X-axis.

Several techniques to estimate source orientation have been developed. The first one, by
Pentland [17], estimates the light source direction from the distribution of image derivatives.
By assuming an umbilical surface and isotropic surface normal, a maximum-likehood analysis
was performed to estimate the slant and tilt angles of the light source.

The brightness equation is given by

I(z,y) = BN - S
or
I(z,y) = B(ngs; + nys, + n.s.)
Here, B is a constant including the albedo term. For sphere, z(z,y) = VR? — 22 — y?,

zp = £, z, = ¥, hence (ng,ny,n.) = 5(2,y,2). The above equation becomes:

T Y z
I(z,y) = B(ESI T RSy T ESZ)
Taking the directional derivative of the above equation in the direction 6 we get:

1 1
dly = B(ESI cos  + Esy sin 6)

Now taking the mean on both sides:

dly = B(ks, cos 0 + ks, sin6)

or

dly = (8, cos O + s, sin 0)

where s, = Bks, and S, = Bks,. Repeating the above process in m different directions

(cosb;,sin;)(: =1,...,m), the regression model can be described as:
d]:gl cosf; sinb,
dly, cosf; sinb, s,
B : : Sy )’
dly cosf,, sinf,

where dI; is the average of the intensity change along the image direction (cos 6;,sin 6;),

A typical choice for (cos#;,sin#8;) is along the eight directions in the image grid: two in
the horizontal direction, two in the vertical direction, and four along the diagonals.

Solving the above system by least squares, we get:
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dl,
- dl,,
( ) G B
Sy :
d];m

where 3 is the matrix of directions (cos 6;,sin ;).
The tilt, 7, of the light source direction is given by:

Tg = arctan(SN—y),
S

and the slant, og, of the light source direction is:

2 2

o5 = arccos y/1 — 8,% — 5,7
Taking the expected value of the square of intensity derivative F[d[?], and cancelling out
the common terms between E[dI]* and E[dI*] by subtracting one from the other, we have

the relation

E[dI?] — E[dI])* = B>,

Since s, = Bks,, s, = Bks,, if we introduce k = Bk = \/E[dlz] — E[dI]?, the equation for
the slant of the light source can be simplified into:

~ 2 ~ 2
_ 1 Sz” F Sy
0g = arccos 2 .

Pentland also extended this approach to the Fourier domain [18].

6.3.2 Horn and Ikeuchi Method
Horn and Ikeuchi [11] minimize the following error function to estimate the shape (p,¢):
B =(I(z,y) = R(p,q))" + Mpi + py + 2 + q3). (6.11)

The first term is the reflectance constraint obtained from equation 6.8, and the second term
is the smoothness of the surface constraint. Differentiating the above equation with respect
to p and ¢, equating the resulting equations to zero, and solving them for p and ¢ we get:

OR

p(z,y) = paulz,y) + T(w,yvp,q)a—p, (6.12)
OR

q(z,y) = quulz,y) + T(l’,y,p,q)a—q, (6.13)

where T'(z,y,p,q) = M. The iterative algorithm for shape from shading using the

above equations is given in Figure 6.10.
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1. k=0, pick p°(z,y) and ¢°(z,y) near boundary.

2. k=k+1;
oR
pH(z,y) = pir ' (z,y) +T(l’,y,p7Q)a—p (6.14)
OR
q(z.y) = ¢ (z,y) +T(l’,y,p7q)a—q (6.15)

3. Stop if the error is small.

Figure 6.10: Horn-Ikuchi algorithm for shape form shading.

6.3.3 Pentland Method

Pentland [16] proposed a local algorithm based on the linearity of the reflectance map in the
surface gradient (p, q), which greatly simplifies the shape from shading problem. By taking
the Taylor series expansion of the reflectance function R, given in equation 6.8, about p = po,
g = qo, up through the first order terms, we have

R oR
I(x,y) = R(po; o) + (P = po) 5~ (Po, 90) + (4 = g0) 5 ~(Po, 90)- (6.16)
P q
For Lambertian reflectance (equation 6.9), the above equation at py = ¢o = 0, reduces to

I(z,y) = coso + pcosTsino + ¢sin7sino. (6.17)

Next, Pentland takes the Fourier transform of both sides of this equation. Since the first
term on the right is a DC term, it can be dropped. Using the identities:

%Z($7y) — Fz(wy,wq)(—twr) (6.18)
0 .
a_yZ(;c,y) — Fz(w,ws)(—iws), (6.19)

where F is the Fourier transform of Z(z,y), we get,
Fr = Fz(w,wy)(—1wy) cos Tsino + Fz(wy,wy)(—iws) sin 7sin o,

where Fpg is the Fourier transform of the image E(z,y). The depth map Z(z,y) can be
computed by rearranging the terms in the above equation, and then taking the inverse
Fourier transform.

Fr

(—iwy) cos Tsing + (—iwy)sinTsino’

FZ(wh("JZ) -

Typical results for Pentland’s methods are shown in Figure 6.11. Other shape from shading
algorithms use more complex models such as interreflections, changing albedos and specular
reflectance [6]. These problems are more difficult and require more computational time to
solve.
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Figure 6.11: Results for Pentland’s Shape from Shading method.

6.3.4 Tsal and Shah Method

Tsai and Shah [24] instead of linearizing the reflectance in p and ¢, they use the discrete
approximations for p and ¢ in terms of Z, and then linearize the reflectance in Z(z,y). They
use the following discrete approximations for p and ¢

p = g—f:Z(x,y)—Z(;c—l,y), (6.20)
q = %:Z(z,y)—Z(:c,y—l). (6.21)

The reflectance equation (equation 6.9) can now be rewritten as:
f(Z(Iay)) = ](Iay) - R(Z(I,y) - Z(:E - 1,3})7 Z(Iay) - Z(Iay - 1)) =0 (622)

By taking the Taylor series expansion of this function f about Z(z,y) = Z"7'(z,y),where
7" Y(z,y) is the depth at the n — 1 iteration, up through the first order terms, we have

0 = f(Z(:C,y))

S [ )+ (L) = 2 e ) (2 ). (62

Then for Z(z,y) = Z"(x,y), the depth map at the n-th iteration, can be solved directly as
follow:

_f(Zn_l('ra
7™Mz, y) = 2"z, y) + (6.24)
Z( 2wy
where
df(Z" " (z,y) _ 1 (ps + )  (p+a)pps + 99 +1) }.(6.25)
z VEFEFT g+ (P 4+ + 12+ g2+ 1

Now, assuming the initial estimate of Z°(x,y) = 0 for all pixels, the depth map can be
iteratively refined using Equation 6.24. In most cases, two or three iterations are enough.
The results for this algorithm are shown in Figure 6.12.
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Figure 6.12: The results for Yowman Image. (a) The input image. The light source param-
eters estimated by Lee & Rosenfeld’s method are : slant = —45.75° | tilt = 62.14°. (b) A
3-D plot of the depth map computed by Tsai-Shah algorithm. (c) A reconstructed gray level
image using depth map in (b) and constant albedo = 255 with the estimated light source
direction (slant = —45.75° | tilt = 62.14°). (d) A reconstructed gray level image using
depth map in (b) and constant albedo = 255 with the light source direction (slant = 45° ,
tilt = 0°).
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6.4 Photometric Stereo

In photometric stereo multiple light sources are used to recover shape. Consider the re-
flectance equation again, the intensity is given by

I(z,y)= BN - S, (6.26)

where B is the albedo, S is the light source vector, and N is the surface normal. Assume we
take three images I1, Iy and I3 with three light sources S', S? and S?, then:

Li(z,y) = BS'N, (6.27)
I(z,y) = BS%N, (6.28)
Is(z,y) = BS°.N. (6.29)
These equations can be written in the matrix form as:
s! 311/ s! Ny I
B| s si s ny | =11 |. (6.30)
53 32 53 n, I3
Or,
BAN =1, (6.31)
BN = A1, (6.32)
B||N|| = [JA~H]]. (6.33)
Since surface normal is unit vector, ||n|| = 1. Now, from the above equation we get:
B=||A'1||. (6.34)
Once we know the albedo, B, we can compute N as follows:
- AT
N = . 6.35
. (6.35)

The results obtained by photometric stereo are shown in Figure 6.13.
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(a) (b) () (d)

Figure 6.13: (a)-(c) Input images with light sources (1,0,1), (=1,1,1), (=1,—1,1) (d) In-

tensity image reconstructted using the surface normals computed by photometric stereo.

6.5 Exercises

1. Verity equation 6.17.

2. Verify equation 6.25.
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Chapter 7

Range Images

7.1 Introduction

Range images represent the distance of the object from the sensor. These images provide the
direct 3-D information (shape) in contrast to the intensity images which record the amount
of light reflected from the objects. In intensity images the intensity value at a pixel depends
on the light source location, surface reflectance, and surface shape. In order to derive 3-D
shape from intensity images we need to apply shape from X methods as discussed in the
previous chapter. Range image provide depth information directly. However, range sensors
are slow and expensive. They provide arrays of numbers which still needs to be processed
and analyzed.

7.2 Range Image Formation

A block-diagram of a typical range sensor is shown in Figure 7.1.

The light beam is transmitted from the transmitter which strikes the object as shown, and
reflected back to the receiver through scanning mirror. A second light beam is also sent to
the receiver directly. The receiver determines the phase difference between the reflected and
the reference beams to compute the distance of object from the sensor. Next, the scanning
mirror is appropriately moved in the horizontal and vertical directions, and the process is
repeated for the other location on the object.

As we know from Physics the speed, ¢, frequency, f, and the wave length, A, are related
as follows: ¢ = Af. Therefore, with speed of light ¢ = 3 x 10°, for a maximum range
of 30 meters, we need to have light beam with a frequence, f, of f = % = 10 x 10°.
Then the distance, D, of the object point from the sensor can be determined by the phase

difference, 6, between the reference and reflected beams by the following formula: 2D = %)\,
or D= %2)\.

One commercially available range sensor, called ODETICS 3D Mapper, has the follow-
ing specifications. The sensor uses a solid state 820 nm (nano meters) GaAlAs (Gallium
Alluminum Arsenide) laser diode. The scan system uses a rotatory polygon mirror for the
horizontal scan and a planar nodding mirror for the vertical scan. It provides 128 x 128
pixels image with a frame rate of 835 msec/frame. The range resolution is 1.44 inches, and
minimum range of 1.5 feet. As it is obvious lt at 820 nm wave length sensor will have very
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Figure 7.1: A Block-diagram of a range sensor.

limited range, therefore, this laser beam is normally modulated with some high frequency
signal (e.g. 10 MHz) to achieve higher range, e.g. 30 m range. Since the sensor computes
the range based on the phase difference which can vary between 0 to 360 degrees, the phase
difference of more than 360 degrees is not possible to determine accurately due to the nature
of the continuous waveforms. For example, the phase difference of 365 degrees will essen-
tially be treated as a phase difference of 5 degrees. Therefore, there is an ambiguity interval,
beyond which we can not determine the range accurately. For the ODETICS sensor the
ambiguity interval is 30.74 feet.

7.3 Surface Characteristics

Range image is an array of numbers which need to processed and analyzed. Since range
represents the distance of object from the object, the object surface characteristics can
directly be derived from the range image.

Important surface characteristics can be derived by computing the surface curvature.
The Gaussian curvature, k, and mean curvature, H are two very popular surface properties
which have been used in Computer Vision. These curvatures are given by:

funfow = F2
I+ 12+ 12"
T+ f) fuu + (L4 fD) oo — 2fu fo2fufo fou
2 (L4 12+ 127 |
where f(u,v) is the range image, f, represents the derivative of f with respect to .
The surface types using the signs of mean and Gaussian curvature can be determined in

k=

H =

the the following way:

e K <0and H <0 : peak
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Figure 7.2: Surface types.

e K <0and H >0 : pit
o K =0and H <0 : ridge
o K =0and H =0 : flat

o K =0and H > 0 : valley

K >0and H <0 : saddle ridge

K > 0and H =0 : minimal

K > 0and H > 0 : saddle valley

Various types are shown in Figure 7.2.

7.4 Edges in Range Images

There are several kinds of edges in the range image.

e Jump Edges represent discontinuity in depth. If the depth difference between a pixel
and any immediate neighboring pixel is above some threshold then it is a jump edge.

¢ Roof Edges or Creases represent discontinuity in orientation. If the angle between
surface normal at a pixel and the surface normal at the immediate neighboring pixel
is above some threshold then it is a roof edge. There are two kinds of roof edges:
Convex (“47), and Concave (“-”). The convex edges are formed when the angle
between the surface normals is above 180 degrees, and the concave edges are formed
when the angel between surface normals is below 180 degrees.
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e Occluding Edges (—). These are convex edges for which there is only one visible
surface (depth discontinuity).

e Limb Edges (—). When the surface normal of edge is perpendicular to the viewing
direction, that edge is called a limb edge.
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