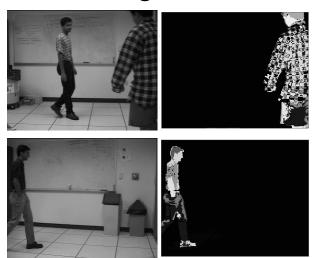


### **Initial Segmentation**



### Segmentation

- Partition f(x,y) into sub-images:  $R_1, R_2, ..., R_n$  such that the following constraints are satisfied:
  - $\bigcup_{i=1}^{n} R_i = f(x, y)$
  - $R_i \cap R_j = [], i \neq j$
  - Each sub-mage satisfies a predicate or set of predicates
    - All pixels in any sub-image musts have the same gray levels.
    - All pixels in any sub-image must not differ more than some threshold
    - All pixels in any sub-image may not differ more than some threshold from the mean of the gray of the region
    - The standard deviation of gray levels in any sub-image must be small.

### Simple Segmentation

$$B(x,y) = \begin{bmatrix} 1 & \text{if } f(x,y) < T \\ 0 & \text{Otherwise} \end{bmatrix}$$

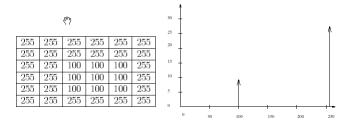
$$B(x, y) = \begin{bmatrix} 1 & \text{if } T_1 < f(x, y) < T_2 \\ 0 & \text{Otherwise} \end{bmatrix}$$

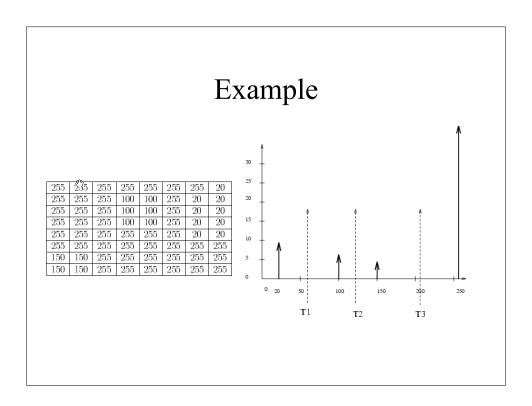
$$B(x,y) = \begin{bmatrix} 1 & \text{if } f(x,y) \square Z \\ 0 & \text{Otherwise} \end{bmatrix}$$

### Histogram

Histogram graphs the number of pixels in an image with a Particular gray level as a function of the image of gray levels.

imhist



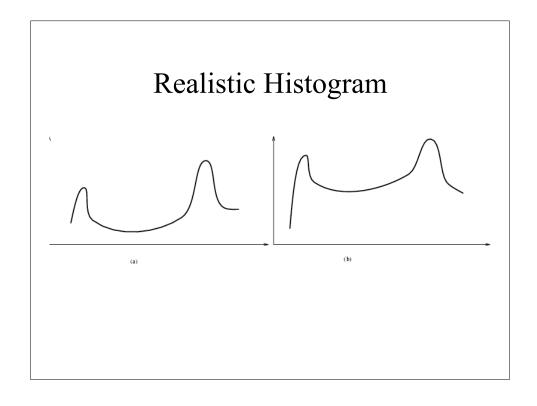


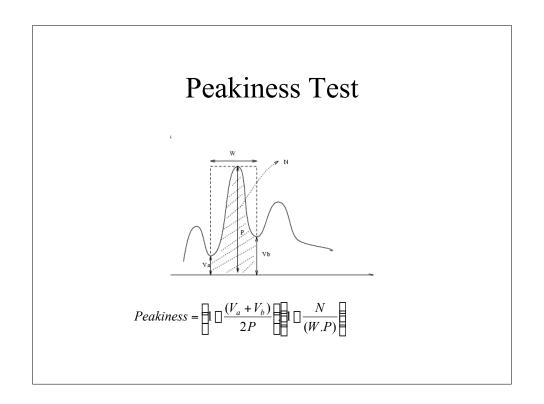
### Segmentation Using Histogram

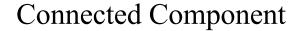
$$B_1(x,y) = \begin{bmatrix} 1 & \text{if } 0 < f(x,y) < T_1 \\ \text{Otherwise} \end{bmatrix}$$

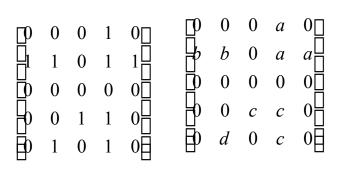
$$B_2(x,y) = \begin{bmatrix} 1 & \text{if } T_1 < f(x,y) < T_2 \\ \text{Otherwise} \end{bmatrix}$$

$$B_3(x,y) = \begin{bmatrix} 1 & \text{if } T_2 < f(x,y) < T_3 \\ \text{Otherwise} \end{bmatrix}$$
Otherwise

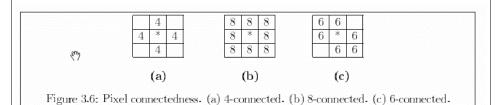




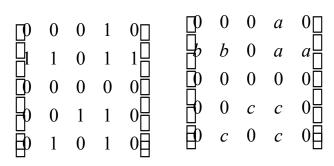




### Connectedness







8

# Recursive Connected Component Algorithm

- 1. Scan the binary image left to right, top to bottom.
- 2. If there is an unlabeled pixel with a value of '1' assign a new label to it.
- Recursively check the neighbors of the pixel in step 2 and assign the same label if they are unlabeled with a value of '1'.
- 4. Stop when all the pixels of value '1' have been labeled.

Figure 3.7: Recursive Connected Component Algorithm.



## Sequential Connected Component Algorithm

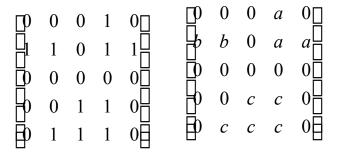
Scan the binary image left to right, top to bottom.

If an unlabeled pixel has a value of '1', assign a new label to it according to the following rules:

- 3. Determine equivalence classes of labels.
- 4. In the second pass, assign the same label to all elements in an equivalence class.

Figure 3.8: Sequential Connected Component Algorithm.

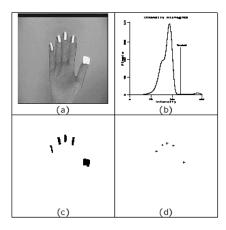




# Steps in Segmentation Using Histogram

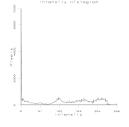
- 1. Compute the histogram of a given image.
- 2. Smooth the histogram by averaging peaks and valleys in the histogram.
- 3. Detect good peaks by applying thresholds at the valleys.
- 4. Segment the image into several binary images using thresholds at the valleys.
- 5. Apply connected component algorithm to each binary image find connected regions.



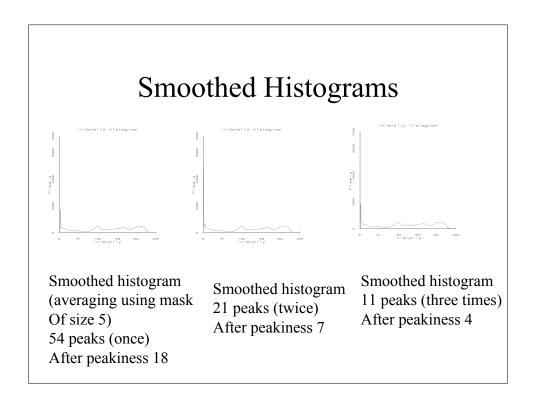


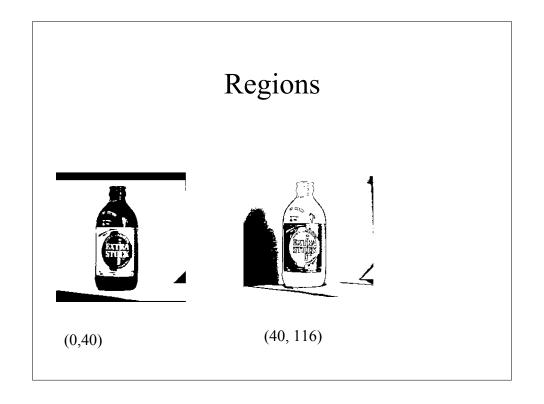
## Example-II

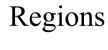




93 peaks









(116,243)



(243,255)

## **Geometrical Properties**

Area

$$A = \prod_{x=0}^{m} \prod_{y=0}^{n} B(x, y)$$

Centroid

$$\overline{x} = \frac{\prod_{x=0}^{m} \prod_{y=0}^{n} xB(x,y)}{A}, \quad \overline{y} = \frac{\prod_{x=0}^{m} \prod_{y=0}^{n} yB(x,y)}{A}$$

### Perimeter & Compactness

**Perimeter**: The sum of its border points of the region. A pixel which has at least one pixel in its neighborhood from the background is called a border pixel.

Compactness

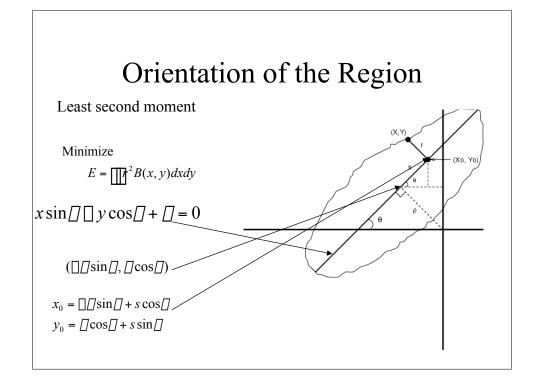
$$C = \frac{P^2}{4 / 1/4}$$

Circle is the most compact, has smallest value





Area decreases



### Orientation of the Region

$$r^{2} = (x \sin \square \square y \cos \square + \square)^{2}$$

$$E = \square r^{2}B(x,y)dxdy$$

$$E = \square x \sin \square \square y \cos \square + \square)^{2}B(x,y)dxdy$$
Substitute  $r$  in  $E$  and differentiate Wrt to and equate it to zero
$$A(\overline{x} \sin \square \square \overline{y} \cos \square + \square) = 0$$
is the centroid
$$x\square = x \square \overline{x}, y\square = y \square \overline{y}$$

$$E = a \sin^{2}\square\square b \sin \square \cos \square + c \cos^{2}\square$$
Substitute value of
$$a = \square \square \square \square \square (x,y)dx\square y\square$$

$$b = \square \square \square \square (x,y)dx\square y\square$$

$$E = \frac{1}{2}(a+c)\square \frac{1}{2}(a\square c)\cos 2\square \square \frac{1}{2}b\sin 2\square$$

$$c = \square y\square B(x,y)dx\square y\square$$

### Orientation of the Region

$$E = \frac{1}{2}(a+c) \Box \frac{1}{2}(a \Box c) \cos 2\Box \Box \frac{1}{2}b \sin 2\Box$$
Differentiating this wrt
$$\tan 2\Box = \frac{b}{a \Box c}$$

$$\sin 2\Box = \pm \frac{b}{\sqrt{b^2 + (a \Box c)^2}}$$

$$\cos 2\Box = \pm \frac{a \Box c}{\sqrt{b^2 + (a \Box c)^2}}$$

$$a = \Box \Box \Box B(x, y) dx \Box y \Box$$

$$c = \Box \Box B(x, y) dx \Box y \Box$$

$$x \Box = x \Box x, y \Box y \Box y$$

$$a = \Box \Box x^2 B(x, y) \Box A\bar{x}^2$$

$$b = 2\Box \Box xy B(x, y) \Box A\bar{y}^2$$

$$c = \Box \Box y^2 B(x, y) \Box A\bar{y}^2$$

#### **Moments**

#### **General Moments**

$$m_{pq} = \prod x^p y^q B(x, y) dx dy$$

Discrete

$$M_{x}^{1} = \prod_{x=0}^{m} \prod_{y=0}^{n} xB(x,y), M_{y}^{1} = \prod_{x=0}^{m} \prod_{y=0}^{n} yB(x,y)$$

$$M_{x}^{2} = \prod_{x=0}^{m} \prod_{y=0}^{n} x^{2}B(x,y), M_{y}^{2} = \prod_{x=0}^{m} \prod_{y=0}^{n} y^{2}B(x,y), M_{xy}^{2} = \prod_{x=0}^{m} \prod_{y=0}^{n} xyB(x,y)$$

Half size, mirror Rotated 2, rotated 45

Table 8.2 Moment Invariants for the Images in Figs. 8.24(a)-(e)

| Invariant<br>(Log)               | Original | Half Size | Mirrored | Rotated 2° | Rotated 4 |
|----------------------------------|----------|-----------|----------|------------|-----------|
|                                  | 6.249    | 6.226     | 6.919    | 6.253      | 6.318     |
| φ <sub>1</sub>                   | 17.180   | 16.954    | 19.955   | 17.270     | 16.803    |
| φ₂<br>                           | 22.655   | 23.531    | 26.689   | 22.836     | 19.724    |
| Φ <sub>3</sub>                   | 22.919   | 24.236    | 26.901   | 23.130     | 20.437    |
| Φ <sub>4</sub><br>Φ <sub>5</sub> | 45.749   | 48.349    | 53.724   | 46.136     | 40.525    |
| $\phi_6$                         | 31.830   | 32.916    | 37.134   | 32.068     | 29.315    |
| φ, _                             | 45.589   | 48.343    | 53.590   | 46.017     | 40.470    |

Hu moments