Course Description
This course teaches how to use mathematics. It also has a strong component of computation by emphasizing issues and practical problems in computational mathematics. Students are trained in (1) the procedures and strategies on how to transform a real world problem into a mathematical one, (2) how to analyze the problem numerically and analytically, and (3) how to find a solution numerically and analytically. The course will also be a platform for students to see various applications of mathematics in image analysis, bio-imaging, bioinformatics, finance, and telecommunication.

Course Requirements:
Students should have completed the Calculus sequence, either ordinary differential equations or linear and matrix algebra. Some basic skills in either C programming language or Matlab are welcome but it is hoped that the course’s computational component will enhance students’ computing skills.

Course Objectives:
Students will be able to apply the principle of mathematical modeling to transform a real world problem into a mathematical one, to use mathematics to analyze the problem, and to solve the problem analytically or numerically.

Required Texts
♦ Textbook: TBA
♦ We will supplement the textbook with lecture notes.
Evaluation Procedures

<table>
<thead>
<tr>
<th>Grade Categories</th>
<th>Description of the requirements</th>
<th>Weight toward final grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom participation</td>
<td>Pose questions, present homework problems</td>
<td>20%</td>
</tr>
<tr>
<td>Homework and Projects</td>
<td>Weekly homework, two projects</td>
<td>30%</td>
</tr>
<tr>
<td>Mid-term Exam</td>
<td>50 min in class test</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>120 min in class test</td>
<td>30%</td>
</tr>
</tbody>
</table>

♦ Grading scale: A: 90-100, B: 80-89, C: 70-79, D: 60-69, F: <60

Additional Policies

<table>
<thead>
<tr>
<th>Homework and projects</th>
<th>Students are encouraged to discuss homework and projects problems but the final write-up must be done individually.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graded assignments</td>
<td>Selected homework and projects will be collected and graded.</td>
</tr>
<tr>
<td>Late, make-up and extra</td>
<td>No late homework will be graded. Make-up tests are given if necessary. No extra credit work will be given.</td>
</tr>
<tr>
<td>credit work</td>
<td></td>
</tr>
</tbody>
</table>

Topics to be covered:

1. Principle of Mathematical Modeling
2. Matlab Basics
3. Matrices and Digital Images
4. Modeling a Camera
5. Detecting Lines
 Least Squares methods
6. Curve Fitting
 Piecewise linear
 Polynomial interpolations
7. Linear Regression
 Stock market and mathematical finance
8. Population Models
 Computational biology
9. Bacteria Models
 Difference equations
10. Eigenfaces
 PCA methods
11. Some physical models
 Newton’s equations