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Abstract

This notebook paper describes the submission of the
LEAR team from INRIA to the THUMOS workshop in con-
junction with ICCV 2013. Our system is based on the re-
cent improvement of dense trajectory feature [14]. After
extracting the local features, we apply Fisher vector to in-
tegrate them into a compact representation for each video.
We also use spatio-temporal pyramids to embed structure
information. Finally a linear SVM with one-against-rest is
employed for the multi-class action classification problem.

1. Introduction
Action recognition is an important area in computer vi-

sion and attracts lots of attention due to the large num-
ber of applications, such as, event analysis, video surveil-
lance, human-computer interaction, etc. The THUMOS
workshop [4] aims at action recognition in the wild with a
large number of classes. This notebook paper describes the
LEAR-INRIA submission. In section 2, we briefly describe
the improved trajectory feature. The Fisher vector represen-
tation is explained in section 3 and experimental results in
section 4.

2. Improved trajectories
Local space-time features are a successful representation

for action recognition. Among the various local features,
dense trajectories [13] perform best on a variety of datasets.
The main idea is to densely sample feature points in each
frame, and track them in the video based on optical flow.
Multiple descriptors are computed along the trajectories of
feature points to capture shape, appearance and motion in-
formation.

Recently, Wang and Schmid [14] further improved dense
trajectories by estimating the camera motion explicitly.
Here we follow exactly the same framework as in [14] and
use the code from the website1 to produce our results on
UCF101 dataset [10]. We briefly review it in the following.

1http://lear.inrialpes.fr/˜wang/improved_trajectories

Figure 1. First row: images of two consecutive frames overlaid;
second row: optical flow [3] between the two frames; third row:
optical flow after removing camera motion; last row: trajectories
removed due to camera motion in white.

For more details, please refer to [14].
To estimate the camera motion, we assume that two con-

secutive frames are related by a homography [11]. This as-
sumption holds in most cases as the global motion between
two frames is usually small. It excludes independently mov-
ing objects, such as humans and vehicles.

For homography estimation, the first step is to find the
correspondences between two frames. We combine two ap-
proaches for feature extraction in order to generate suffi-
cient and complementary matches. We extract SURF [1]
features and match them based on the nearest neighbor rule.

http://lear.inrialpes.fr/~wang/improved_trajectories


HOG HOF MBH HOG+HOF HOG+MBH HOF+MBH HOG+HOF+MBH

— 72.4% 76.0% 80.8% 82.9% 83.3% 82.2% 84.8%
T2 72.8% 76.1% 81.1% 82.7% 83.3% 82.2% 84.8%
H3 73.2% 77.3% 80.5% 82.7% 83.4% 82.0% 84.6%
Combine 74.6% 78.3% 82.1% 83.9% 84.4% 83.3% 85.9%

Table 1. The average accuracy over three train-test splits on UCF101 dataset. “—” stands for no SPM; “T2” is two temporal blocks; and
“H3” three horizontal strips.

We also sample motion vectors from the optical flow, which
provides us with dense matches between frames. Here, we
use an efficient optical flow algorithm based on polynomial
expansion [3]. We select motion vectors for salient feature
points using the good-features-to-track criterion [9]. Un-
like [14], we do not use human detection to remove incon-
sistent matches from humans, as human detector is too com-
putationally expensive to run on large datasets.

We estimate the homography using all the matches with
RANSAC. This allows us to rectify the image to remove the
camera motion. Figure 1 (two rows in the middle) demon-
strates the difference of optical flow before and after recti-
fication. Compared to the original flow (the second row of
Figure 1), the rectified version (the third row) suppresses the
background camera motion and enhances the foreground
moving objects.

For dense trajectories, there are two major advantages of
canceling out camera motion from optical flow. First, the
motion descriptors can directly benefit from this. As shown
in [13], the performance of the HOF descriptor degrades
significantly in the presence of camera motion. The exper-
imental results in [14] show that HOF can achieve similar
performance as MBH when we have correct foreground op-
tical flow.

Second, we can remove trajectories generated by camera
motion. This can be achieved by thresholding the maxi-
mal magnitude of the displacement vectors of the trajecto-
ries in the warped flow field. If the displacement is small,
the trajectory is considered to be similar to camera mo-
tion, and thus removed. Figure1 (last row) shows examples
of removed background trajectories. This results in sim-
ilar effects as sampling features based on visual saliency
maps [6, 12].

3. Feature encoding

For each trajectory, we compute several descriptors (i.e.,
HOG, HOF and MBH) with exactly the same parameters
as [13]. The final dimensions of the descriptors are 96 for
HOG, 108 for HOF and 192 for MBH. To encode features,
we use Fisher vector. Unlike bag of features, Fisher vec-
tor [8] encodes first and second order statistics between the
video descriptors and a Gaussian Mixture Model (GMM).
In recent evaluations [2, 7], this shows an improved per-
formance over bag of features for both image and action

classification.
To compute Fisher vector, we first reduce the descrip-

tor dimensionality by a factor of two using Principal Com-
ponent Analysis (PCA), as in [8]. We set the number of
Gaussians to K = 256 and randomly sample a subset of
256,000 features from the training set to estimate the GMM.
Each video is, then, represented by a 2DK dimensional
Fisher vector for each descriptor type, where D is the de-
scriptor dimension after performing PCA. Finally, we apply
power and L2 normalization to the Fisher vector, as in [8].
To combine different descriptor types, we concatenate their
normalized Fisher vectors.

We also use spatio-temporal pyramids (SPM) [5] to em-
bed structure information in the final representation. We
split the video into two blocks in time (i.e., T2) and into
three horizontal strips (i.e., H3) as in [7]. In all experiments,
we use a linear SVM for classification and fix C = 100 for
the SVM. In the case of multi-class classification, we use a
one-against-rest approach and select the class with the high-
est score.

4. Experimental results

We present all the results in Table 1. As expected,
the best single descriptor is MBH. HOF works better than
HOG, as camera motion compensation significantly im-
proves its performance. Unlike [14], we do not include the
Trajectory descriptor in Table 1, as combining it does not
result in a further improvement.

Combining different descriptors is a straightforward way
to improve the results. For the case of only combining two
descriptors, “HOG+MBH” works the best, as MBH is the
best motion descriptor and HOG is complementary to it. In-
terestingly, combining HOF and MBH further improves the
results as they are complementary to each other. HOF repre-
sents zero-order motion information, whereas MBH focuses
on first-order derivatives. Combining all three descriptors
gives the best performance, i.e., 84.8%.

If we compare the different rows in Table 1, we find
spatio-temporal pyramids always helps to improve the per-
formance. The improvement is more significant for a single
descriptor. We observe around 2% improvement for HOG,
HOF and MBH. For their combined version, SPM results
in a smaller improvement of around 1%. Finally combining
everything gives the best performance 85.9%, which is the



result we submitted to the workshop [4].
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