UCF RET Site: Research Experiences in Computer Vision and Crowd Counting & Data Collection Lesson Plan

AP Computer Science Principles

2018

Canone, Christopher R.
AP Computer Science Principles
7/11/2018
RET Site: Research Experiences in Computer Vision and Crowd Counting Lesson Plan

Course: AP Computer Science Principles
Grade Level: 9th – 12th Grade
Suggested Length of Lesson: 2-3 days

Materials/Technology Needed
- Presentation Capability (power point)
- Ability to show python programing
 - (Extra not necessary)

Where this Fits
- As an extension activity after students learn about how computers work and how to create and use algorithms. As well as understanding the importance of the collection of Data.

Lesson Objective(s)/Learning Goal(s)
- Students will be able to describe Crowd Counting the utilization of it within “Big Data” and data collection
- Student will understand the importance of Data Collection and where CROWD COUNTING fits into Data
- Students will be able to compare and contrast machine learning methods, AI and Computer Vision applications

Standard(s)/Benchmark(s) Addressed
- Standards:
 - **EK 4.1.1H:** Different algorithms can be developed to solve the same problem
 - **EK 4.2.3B:** A decidable problem is one in which an algorithm can be constructed to answer “yes” or “no” for all inputs
 - **EK 4.2.4E:** Sometimes, more efficient algorithms are more complex

Standards for Mathematical Practice

Instructional Strategies
- **Monitoring Progress**
 - Reflection/Response class questioning and written reflections
- **Compare and Contrast**
 - Different machine learning algorithms
- **Graphing Organizers**
 - Charts and diagrams explaining algorithms

Evidence of Learning (Assessment Plan)
- Students will be able to work in groups and collaborate in a humanistic approach of creating a counting algorithm.

Description of Lesson Activity/Experiences:

Pre-Work:
- “DATA Collection Project”
 - Your assignment is to collect images of crowds or groups of people (preferably 25 people or better).
 - Images should be:
 - Best Quality
 - 50-100 or more
 - Consistent (if possible Location, day, time)
 - Minimum 7 Images

Day 1
- Go through attached presentation: Computer Vision UCF/RET
 - Computer Vision
 - How Computers see things?
 - Scene Classification
 - Edge Detection
 - A.I.
 - Neural Network Video (Homework/Edpuzzle)
Day 2
- Go through attached presentation: Crowd Counting (NEARPOD)
 - What is Big Data?
 - The Value of Big Data?
 - What is Big Data being used for?
 - What is Crowd Counting?
 - UCF’s Research
 - Real Life Applications
 - Data collection, Security, Attendance large demonstrations, Targeting, etc
- Build teams. Go thru activity with images.
 - Review group answers
 - Based on the image given where do you feel the image was taken?
 - Based on the image, How many people were at the event?
 - How did you as a team come up with that number? Was there a process/algorithm used? What was it?
 - Why do you think that number is important to know?
- Discuss group counting Algorithm
 - Jacob’s Method Overview
- Data/Picture Collection project
 - Pictures collected by students – “Data Collection” Project
 - What were the details of the images taken?
 - Based on your images, Use website to determine how many people were in each image.
 - What is a good evaluation and description of the images and data that you have collected
- Wrap up discussion.

Day 3 & 4:
- EXPLORE TASK Practice:
 - Pick a UCF Research Project from http://crcv.ucf.edu/research
 - Create a 1 page write up. Answer these questions:
 - What is the purpose or function of this research?
 - How does this “research” impact society, the economy, or culture?
 - Describe how the “research” are beneficial AND how they may be harmful?

Recommended Assessment(s) and Steps
- Have students fill out Worksheet as a group and check algorithms with other groups and compare to the computer algorithms.
- Have students as individuals fill out Worksheets, reflecting on the set of pictures collected during “Data Collecting” project.
 - Don’t forget to make them explain their answers as this will what makes them and rest of the class think. May also create disagreement and discussion.

List of Materials/Resources Used
- Worksheet – 2 pages, Image worksheet and counting
- PowerPoint –
Important Vocabulary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>A process or set of rules to be followed in calculations or other problem-solving operations, especially by a computer.</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>The theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.</td>
</tr>
<tr>
<td>Big Data</td>
<td>A term for datasets so large or complex that traditional data processing applications are inadequate.</td>
</tr>
<tr>
<td>Boosting</td>
<td>A machine learning ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms which convert weak learners to strong ones.</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>A type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed.</td>
</tr>
<tr>
<td>Crowd Counting</td>
<td>A technique used to count or estimate the number of people in a crowd.</td>
</tr>
<tr>
<td>Neural Network</td>
<td>A computer system modeled on the human brain and nervous system.</td>
</tr>
<tr>
<td>Supervised Learning</td>
<td>Is the machine learning task of inferring a function from labeled training data.</td>
</tr>
<tr>
<td>(in terms of computers)</td>
<td></td>
</tr>
<tr>
<td>Unsupervised Learning</td>
<td>A learning techniques that group instances without a pre-specified dependent attribute. Clustering algorithms are usually unsupervised.</td>
</tr>
</tbody>
</table>
References

https://youtu.be/jmY2LXy-hXU
Acknowledgements

Authors

Dana Singer, Kishan Athrey, and Niels da Vitoria Lobo

Supporting Program

SHAH RET Program, College of Engineering and Computer Science, University of Central Florida. This content was developed under National Science Foundation grant #1542439.

Contact information

Dana Singer – Dana.Singer@ocps.net