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Abstract

In order to efficiently recognize actions from depth se-
quences, we propose a novel feature, called Global Ternary
Image (GTI), which implicitly encodes both motion region-
s and motion directions between consecutive depth frames
via recording the changes of depth pixels. In this study,
each pixel in GTI indicates one of the three possible s-
tates, namely positive, negative and neutral, which repre-
sents increased, decreased and same depth values, respec-
tively. Since GTI is sensitive to the subject’s speed, we ob-
tain energy-based GTI (E-GTI) by extracting GTI from pair-
wise depth frames with equal motion energy. To involve tem-
poral information among depth frames, we extract E-GTI
using multiple settings of motion energy. Here, the noise
can be effectively suppressed by describing E-GTIs using
the Radon Transform (RT). The 3D action representation is
formed as a result of feeding the hierarchical combination
of RTs to the Bag of Visual Words model (BoVW). From the
extensive experiments on four benchmark datasets, namely
MSRAction3D, DHA, MSRGesture3D and SKIG, it is evi-
dent that the hierarchical E-GTI outperforms the existing
methods in 3D action recognition. We tested our proposed
approach on extended MSRAction3D dataset to further in-
vestigate and verify its robustness against partial occlusion-
s, noise and speed.

1. Introduction

Recognizing human actions in the real-world environ-

ment finds applications in a variety of domains includ-

ing intelligent video surveillance, customer attributes, and

shopping behavior analysis. Common approaches in action
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Figure 1: The pipeline of extracting proposed representation.

recognition (e.g. hug, hand wave, smoke, etc.) rely on color

cameras to record actions as RGB sequences and develope-

d distinctive action representations to improve recognition

accuracy [1, 2, 3].

Accurate recognition of actions is a highly challenging

task due to cluttered backgrounds, occlusions, light inten-

sity and viewpoint variations [1]. In fact, extracting and

encoding 3D motions from depth sequences that contain re-

dundant data and background noise is often cited as an issue

for the 3D action recognition [4, 5]. With rapid advances of

imaging technology in capturing depth information in re-

al time, there has been a growing interest in solving action

recognition problems by using depth data (using depth cam-

eras such as the Microsoft Kinect RGB-D camera). Depth

data is estimated by infrared radiation and it is robust a-

gainst the changes in lighting conditions compared to the

conventional RGB data [6]. In addition to that, subtracting

foreground from cluttered background can be done more ac-

curately using the depth information which is independen-

t from nuisance background attributes such as texture and

color [7]. Moreover, accurate three-dimensional informa-

tion of the subjects/objects can be exploited from the pre-
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(b) GTIs from side, front, top views (a) Pairwise depth frames

Figure 2: GTIs generated from side, front and top views. In GTIs, the pixels in
red, green and blue represent positive, negative and neutral states respectively.

cise depth maps recorded by the RGB-D cameras [8].

In this paper, we propose a compact and robust represen-

tation for 3D action recognition, based on a set of Global

Ternary Images (GTIs). The idea behind using the GTI is

motivated by the fact that 3D motions can be implicitly ex-

pressed by changes in the depth value from three orthogo-

nal coordinates. As shown in Fig. 1, our proposed approach

comprises of three main stages. First, we extract GTIs from

consecutive depth frames by detecting the changes in the

state of each depth pixel. Each pair of depth frames gen-

erates three GTIs, which reflect the motions from the side,

front and top views. Second, we adopt Radon Transform

(RT) for encoding the GTIs to eliminate noise and reduce

redundant data. In the third stage, we treat motion descrip-

tors for pairwise depth frames as basic “words” and apply

Bag of Visual Words (BoVW) model [1, 9] to encode all

descriptors by a single feature vector.

Unlike previous local feature-based approaches that ig-

nore spatial information, GTI is a global feature, capable of

capturing the spatial relationships among local parts of mo-

tion regions. An example of this is evident by comparing

Fig. 2 (a) and Fig. 2 (b). Fig. 2 (a) shows that motion-

s are not very noticeable across two original depth frames,

while Fig. 2 (b) shows that motion regions and directions

are more evident. This enhanced representation is derived

as a result of presenting the 3D motions and pairwise depth

frames in terms of three GTIs.

Even though GTI can properly encode motion informa-

tion, it is highly sensitive to the speed changes. The same

types of actions, performed at various speeds, lead to mis-

alignments of depth frames, resulting in different number-

s and appearances of GTIs. To solve this problem, we

propose Energy-based GTI (E-GTI) by combining energy-

based sampling method and GTI. Our sampling method ad-

dresses this problem by sampling a fixed number of frames

with equal energy across consecutive frames. Fig. 3 cap-

tures the changes occurred when a subject moves from pose

A to pose B at different speeds. Our observation is that
when a subject changes from one pose to another, the ener-

gy cost to overcome gravity is independent of the speed of

performing the action. Therefore, the energy cost between

poseA and poseB in Fig. 3 (a) and Fig. 3 (b) are equal, i.e.
Ea = Eb. When the energy for our sampling method is set

to Ea or Eb, only pose A and pose B are sampled and the
frames in the green boxes are ignored. In other words, the

sampled frames are not related to the speed changes.

Since we use BoVW model to encode E-GTIs, the tem-

poral dependencies among depth frames are ignored. To

this end, the E-GTIs are extracted from depth sequences, us-

ing multiple settings of motion energy, and organize E-GTIs

in a hierarchical structure. Here, E-GTIs that use high val-

ues of motion energy record dependencies among frames in

a large scale, while those that use low values of motion en-

ergy record dependencies among frames in a small scale (n-

earby frames). Where temporal dependencies are involved,

we exploit representation-level fusion to obtain 3D action

representation.

It is worthwhile to highlight several properties of the

proposed scheme. First, both motion regions and motion

directions between consecutive depth frames are efficient-

ly preserved using GTI. Second, E-GTI measure is inde-

pendent of the subject’s speed. Third, each E-GTI is de-

scribed by RT, which ensures robustness of resulting de-

scriptors against both partial occlusions and noises. Fourth,

we incorporated temporal information among depth frames

by extracting E-GTI from depth sequences in a hierarchical

fashion. Finally, we achieved state-of-the-art results on four

benchmark datasets; two of which are 3D action recognition

datasets, namely MSRAction3D [10] and DHA [11], and

the remaining are 3D gesture recognition datasets, namely

MSRGesture3D [12] and SKIG [13]. The remainder of the

paper is organized as follows. Section 2 reviews the related

work. Sections 3 and 4 present the E-GTI and 3D action

recognition framework using E-GTI, respectively. Section

5 describes the experimental description and analysis. Fi-

nally, Section 6 presents the conclusions.

2. Related Work
We review four types of methods on encoding 3D mo-

tions from depth sequences. As a traditional method for

extracting motions, frame difference method calculates the

differences between consecutive frames to generate motion

regions. By accumulating these motion regions across a w-

hole sequence, Boblick et al. [14] proposed a Motion Ener-

gy Image (MEI) to represent where motion has occurred in

an RGB sequence. AMotion History Image (MHI) was also

proposed, where each pixel’s intensity in MHI is a function

of temporal history information at that point. By incorpo-

rating an additional dimension of depth, Azary et al. [15]

extended MHI to define a Motion Depth Surface (MDS),

which captures most recent motions in the depth direction

as well as within each frame. To make full use of depth

information, Yang et al. [16] projected depth maps onto

three orthogonal planes and generated a Depth Motion Map

(DMM) in each plane by accumulating foreground regions

through an entire sequence. Based on the concept of DMM,
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Chen et al. [17, 18] proposed an improved version, which

stacks the depth values across an entire depth sequence for

three orthogonal planes. DMMs-based representations, ef-

fectively transform the action recognition problem from 3D

to 2D and they have been successfully applied to depth-

based action recognition.

An alternative approach to encode motions in depth se-

quences is by describing action shapes. Li et al. [10] ex-

tracted points from the contours of planar projections of 3D

depth maps and employed an action graph to model the dis-

tribution of sampled 3D points. Recently, Tang et al. [19]

developed a Histogram of Oriented Normal Vectors (HON-

V) by concatenating histograms of zenith and azimuthal an-

gles to capture local distribution of the orientation of an ob-

ject surface. Oreifej et al. [20] extended HONV to 4D s-

pace with time, depth and spatial coordinates and presented

a Histogram of Oriented 4D Normals (HON4D) descrip-

tor to encode the surface normal orientation of human ac-

tions. HON4D, by jointly capturing the distribution of mo-

tion cues and dynamic shapes, exhibits more discrimina-

tive power than the approaches that separately encode the

motion and shape information. To further increase the ro-

bustness of HON4D, Yang et al. [21] grouped local hyper-

surface normals into polynormals, and then aggregated low

level polynormals into the Super Normal Vector (SNV).

Unlike the above three features, cloud points, which de-

note human actions as a cloud of local points, are suitable

to tackle both partial occlusions and the noise of original

depth data. Li et al. [10] extracted points from the contours
of planar projections of 3D depth map and employed an ac-

tion graph to model the distribution of sampled 3D points.

Vieira et al. [22] divided 3D points into similarly sized 4D
grids and applied spatial-temporal occupancy patterns to en-

code them. Wang et al. [12] explored an extremely large
sampling space of random occupancy pattern features and

used a sparse coding method to encode those features.

3. Energy-based Global Ternary Image

Given the depth sequences that contain actions, the first

step in 3D action recognition is to model 3D motions. To

simplify the problem, we propose GTI to encode 3D mo-

tions on three projected views. Even though the data of

original depth frames is significantly reduced by using 2D

projected maps, GTI still proves to be more accurate in en-

coding the details of 3D motions. Since GTI is sensitive to

speed, we further extend GTI to E-GTI, which is robust to

speed changes. In this section, we present the details of the

proposed E-GTI.

3.1. Global Binary Image

Frame difference method, which captures motion region-

s, has been used to describe motions between consecutive

frames. Lu et. al. [23] used the frame difference method to

capture motions between two frames from RGB sequences

by extracting motion areas, where the RGB value in previ-

ous frame differs from that of the current frame. For depth

sequences, Yang et al. [16] projected depth maps onto three

views and constructed DMMs by simply stacking the mo-

tion regions across a whole sequence to describe 3D actions.

As a mainstream feature for 3D action recognition, DMM-

s outperform other features by encoding 4D information of

motion regions in three projected planes. DMMs signifi-

cantly reduce the data of original depth sequence by using

just three 2D maps. However, the motion information in

DMMs is still ambiguous, because of overlapping, in dis-

tinguishing similar actions. We name the motion regions

extracted from consecutive frames as Global Binary Images

(GBIs), which show discriminative power in describing mo-

tions. Since DMMs are formed by stacking GBIs on three

views, most of the information from GBIs is overlapped and

is therefore not fully used. To solve this problem, we pre-

serve all information from GBIs by using a BoVW model.

Specifically, three GBIs are combined into a single feature

for describing a pair of frames. All features extracted from

a depth sequence are aggregated into a compact representa-

tion by using the BoVW model.

To take advantage of additional information on motion

and shape from depth maps, we project each depth frame

onto three orthogonal Cartesian planes. We discard back-

ground (i.e. zero) region and select the bounding box of

foreground (i.e. non-zero) region on each projected map

as the region of interest. To achieve scale invariance, the

bounding boxes are normalized to their respective fixed

sizes. This normalization successfully eliminates effects of

different heights and motion extents of different subjects.

E1

E2

E4

Ea

E5

E6

Eb

Pose A Pose B Pose A Pose B
(a) (b)

E3

Figure 3: Illustration of energy cost between pairwise poses. (a) One person puts up the right hand at a slow speed. (b) One person puts up the right hand at a fast speed. The
frames in the green boxes are generated by different speeds. Ea andEb mean energy between pairwise frames. E1, E2, E3, E4, E5, E6 mean the energy between consecutive
frames. We estimate the energy between pairwise frames by accumulating the energy between consecutive frames, e.g. Ea = E1 + E2 + E3 + E4,Eb = E5 + E6.
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After these steps, the i-th depth map from a depth sequence
can generate three 2D maps on the front, side, and top views

respectively ( i.e. mapif , map
i
s, map

i
t). For each view, we

compute and threshold the differences between consecutive

maps and obtain binary maps to indicate motion regions. In

the following discussion, each binary map is called a GBI.

Compared to the original depth maps, GBIs are less sensi-

tive to noise, and therefore, they can provide more accurate

clues regarding action-related motions.

Here, a 3D action is represented by an input depth se-

quence I, where Ii represents the i-th frame, and the maxi-
mum number of frames is represented by N .

I = {I1, ..., Ii, ..., IN} s.t. i ∈ (1, ..., N). (1)

For every i-th frame, we estimate the inter-frame motion
between Ii−1 and Ii. The depth value for each pixel of con-
secutive frames (Ii−1 and Ii) exhibits two useful properties.
First, the 3D shape information of actors can be reflected by

the spatial distribution of depth values. Second, the changes

in depth value across frames provide motion information in

the depth direction. To make full use of depth information,

we project Ii−1 and Ii onto three orthogonal planes

Ii → {mapiv }, where v ∈ { f, s, t }. (2)

Cluttered backgrounds usually introduce ambiguity and re-

duce the accuracy of foreground action recognition. To de-

termine the scope of foreground, we accumulate projected

maps across a whole sequence and then find the bounding

box of the accumulated projected maps. The bounding box

is the smallest rectangle, which contains all the regions that

an actor can ever reach. Foregrounds are extracted from

projected maps, by using bounding boxes, and then resized

to fixed sizes. Inter-frame motions are calculated from pair-

wise foregrounds, and applying size normalization, leads

to robustness against scale variability across all inter-frame

motions.

A GBI is a binary map, which can be defined as the mo-

tion region between two consecutive maps,

GBIiv = |mapiv −mapi−1v | > Tr, (3)

where i ranges from 2 toN , and Tr is a threshold. We deter-
mine Tr by Otsu’s method, an image thresholding algorith-
m, which maximizes the separability of the resultant classes

in gray levels [24]. The definition of GBI in Eq. 3 implies

that the motion regions generated by any kind of motions

are reflected in the GBI. Horizontal motions, shared by mul-

tiple types of actions, directly introduce ambiguity in dis-

tinguishing similar actions. Therefore, this approach may

not appeal to real applications where the actions are taking

place during the subject’s movement. To solve this prob-

lem, we propose an improved GBIs, which is less affected

by variations in horizontal motions.

#11

(a)

# 2 # 4 # 2 # 4

# 2 # 4

Consecutive depth frames Horizontal translation estimation Shifted depth frames

(b)

SkipOriginal GBI Improved GBI Original GBI Improved GBI

# 2 # 4

Walk

Figure 4: Original GBIs and improved GBIs: (a) A reference line is assigned to
each depth frame, and by shifting the reference lines to the same position the horizon-
tal translation between consecutive frames is compensated; (b) Given two actions, i.e.
walking and skipping the original GBIs from depth frames and the improved GBIs
from shifted depth frames show that the improved GBIs have better discriminative
power compared to the original GBIs for distinguishing between similar actions.

Here, we first estimate horizontal motions between two

consecutive maps, and then compensate them by shifting

maps. Finally, GBIs are calculated by using the original

definition. To estimate horizontal motions, we define a ver-

tical line for each map, and then assume that the horizontal

distance between consecutive vertical lines represents the

horizontal shift. Indeed, when the actions are performed

while the subject are still the position of each vertical line

needs to be stable. To get the position of vertical line, we

calculate the average position of foreground pixels on each

line and then average these positions across all the lines.

The comparison between original GBIs and the improved

GBIs is illustrated in Fig. 4. It is to be pointed out here

that the improved GBIs also are referred to as GBIs in the

following sections.

3.2. Global Ternary Image

In addition to the motion regions captured by the GBIs,

motion directions are also necessary for describing motion-

s. For this reason, we assign directional information to G-

BIs. In RGB sequences, optical flow [25] is a benchmark

method to calculate frame-by-frame motions, where both

motion regions and motion directions are captured. Here,

the performance of optical flow deteriorates as a result of

lack of textural information. For extracting optical flow, the

motion field needs to be nearly smooth, while the depth val-

ues often change dramatically during the process. This lead-

s to another major problem and limits the application of this

technique. As a result, we have to obtain motion directions

from depth data by detecting changes in depth values.

For example, we determine the motions for red, green

and blue points, as shown in Fig. 5 (c). For the blue point,

the change in depth value is small; therefore, no motion is

detected. This step is used to suppress the effect of noisy

data and to maintain stability of motion areas. For the red
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(a) raise up a hand & put down a hand (b) GBIs (c) GTIs

Figure 5: Comparison between GBIs and GTIs.

point, a big change in depth value is observed; therefore,

motion could be detected at this point. The motion on the

red point is considered positive, because the depth value in-

creases from previous frame to current frame. For the same

reason, the motion on the green point is considered nega-

tive. By repeating this procedure for all the points on the

GBI, we can obtain a GTI which contains information re-

garding both motion region and motion direction.

Given GBIiv , we define the corresponding GTI by,

GTIiv = GBI
i
v · ψ

{
mapiv,map

i−1
v

}
, (4)

where GBIiv and ψ respectively determine motion regions
and motion directions, and the red/green color in GTI de-

notes motion directions. ψ{A,B} is defined as,

ψ
{
A,B

}
=

{
1, if A > B

−1, otherwise,
(5)

where each element of matrix A and the corresponding ele-
ment of matrix B is compared.

To emphasize the merit of GTI, we compare it with GBI

in Fig. 5, where two actions: “raise up a hand” and “put

down a hand” are utilized for extracting both types of mo-

tion maps. Here, GBIs of these two actions look the same,

but the GTIs look different. For instance, the information

from GBI only suggests that the left hand of the subject

moves in the vertical direction. While the information from

GTI, suggests that the hand moves up for “raise up a hand”

and moves down for “put down a hand”.

3.3. Energy-based Global Ternary Image

The pace of each subject might vary under influence of

different factors and time constraints. For example, the rate

of change in the generated sequences might vary when an

action is repeated several times by the same subject. This

leads to increase in the inter-dissimilarities among the same

type of actions. As for inter-frame motions, the speed

of action directly affects the shape of motion. To tackle

this problem, we convert the original depth sequences into

speed-insensitive sequences, using energy-based sampling

method. Based on the new speed-insensitive sequence, we

extract GTIs from a sequence of frames, which results in

a set of Energy-based GTI (E-GTI). In following parts, we

Algorithm 1: Energy based sampling method
Input: depth sequence I = {Ii}Ni=1, number of framesM
Output: speed insensitive sequence SM

1 for v ∈ {f, s, t} do
2 for i = 2; i ≤ N do
3 IMM i

v ← Eq. 3;

4 for i = 2; i ≤ N do
5 Ei ← Eq. 6;

6 S1 ← I1, SM ← IN ,m← 1;
7 whilem ≤M − 1 do
8 for i = 2; i ≤ N − 1 do
9 if ( E

N

M−1 ·m) ≤ Ei then
10 Sm+1 ← Ii;
11 m← m+ 1;

12 return SM+1 = {Sm}Mm=1;

# 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12

# 1
# 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12 # 13 # 14

# 1 # 6 # 7 # 8 # 9 # 12

(d)

(a)

(b)

(c)

# 1 # 4 # 7 # 8 # 12 # 14

# 1

Figure 6: Energy-based sampling method: (a) and (d) Original depth sequences
performing same type of action with different speeds; (b) and (c) Speed-insensitive
sequences extracted by selecting frames from original sequences.

focus mainly on the energy-based sampling method.

Given a depth sequence with N frames, we define the
accumulated motion energy on the i-th frame thus,

Ei =
∑

v∈{f,s,t}

∑i

j=2
sum

{
GBIiv

}
. (6)

Here, sum{·} returns the number of non-zero elements in a
binary map. As observed in [21], the accumulated motion

energy on a frame reflects the relative motion status (relates

to the whole sequence). Different from [26], the energy here

stands for motion rather than temperature. In Algorithm 1,

we select frames from a given depth sequence to construct

a speed-insensitive sequence withM frames. This pipeline

can be divided into two steps. Initially, the first and the last

frames are selected as the starting and ending frames of final

sequence.Then,M−2 frames are selected to make sure that
the motion energies between consecutive frames are nearly

equal. As shown in Figs. 6 (a) and (d), the action of “waving

two hands” is performed with different speeds. Following

Algorithm 1, we obtain the new sequences in Figs. 6 (b)

and (d), where the parameter M is set to six. It can be seen

that the inter-dissimilarities between (b) and (c) are much

smaller than those between (a) and (d), which indicates that

the new sequences are speed-insensitive.
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(a)

y

x

R

ө

(b)

(c)
Figure 7: GBIs and their corresponding Radon Transform: (a) GBI is generat-
ed from depth frames under various conditions like partial occlusions or noises; (b)
Radon Transform with parameter θ, ranging from 0 to π at an interval of 1. (c) Radon
Transform with parameter θ ranging from 0 to π at an interval of 30; for better ob-
servation, the resulting images in (c) are interpolated to be π in width.

In [21] motion energy has been exploited to adaptively

divide a depth sequence into several segments with equal

motion energy. Then, each segment is described and con-

catenated as an action representation. However, the effect

of speed is not tackled in [21], since each segment is seg-

mented directly from the original sequence. In this section,

we show that the state of human pose in a sequence is re-

lated to motion energy. When a person changes his or her

pose, from one to another, the motion energy between the

two poses is a stable value, which is unrelated to speed.

Therefore, we select frames from the original sequence and

form a new sequence, in which the motion energies between

consecutive frames are nearly the same. This leads to elim-

ination of the effect of variations in speed in the new se-

quence. Based on the new sequence and following the same

steps as those used for forming GTIs, E-GTIs are extracted.

Here, E-GTIs inherit the merits of GTIs, while exhibiting

robustness against the speed changes.

3.4. Radon Transform

Radon Transform in two dimensions [27] is the integral

transform consisting of the integral of a function over s-

traight lines. In other words, Radon Transform can find the

projection of a shape on any given line. Given a compact-

ly supported continuous function f(x, y) on R2, the Radon
Transform is defined as:

R
{
f(x, y), θ

}
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x, y)·

δ(xcosθ + ysinθ − ρ)dxdydρ,
(7)

where δ is the Dirac delta function, ρ ∈ [−∞,+∞],
and θ ∈ [0, π]. When f(x, y) stands for an im-
age of W in width and H in height, ρ is limited to[�−√W 2+H2

2 �, �
√
W 2+H2

2 �].
Chen et al. [28] used Radon Transform to describe hu-

man postures. Inspired by their work, we propose a GBIs

based approach using Radon Transform and show that the

robustness of Radon Transform to partial occlusions and

noisy data is beneficial in describing the GBIs. For ex-

ample, several GBIs in Fig. 7 (a) are described by Radon

Transform. Despite the occlusions or noise in GBIs, their

corresponding Radon Transforms in Fig. 7 (b) remain near-

ly the same. Let GBIiv denote a GBI, then the correspond-
ing Radon Transform Ri

v can be formulated as:

Ri
v =

[
R
{
GBIiv, θj

}]J
j=1
, (8)

where θj ∈ [0 π]. As shown in Figs. 7 (b) and (c), we set
θj to range from 0 to π at an interval of respectively one
and 30. Obviously, the images in (c) can preserve the gen-

eral structural information of the images in (b), but contain

less data than that of the images in (b). Based on this obser-

vation, we set θj to different values for Radon Transform,
resulting in a low dimension, yet informative, descriptor for

GBIs. SupposeGTIiv denotes a GTI, we convert it into two
GBIs: +GTIiv · (GTIiv > 0) and −GTIiv · (GTIiv < 0).
We use Eq. 8 to describe each GBI and concatenate both

the results as the descriptor for GTI.

4. 3D Action Recognition

4.1. GTI based representation

Bag of Visual Words (BoVW) model is one of the pop-

ular methods for obtaining a compact representation from

local features. Based on this model, a depth sequence can

be represented as a bag of GTIs, where three GTIs of front,

side, and top views of two consecutive depth maps are com-

bined to form a feature. LetRi
v denote the Radon Transform

ofGTIi from view v, where v ∈ {f, s, t}. Then,GTIi can
be described thus:

Ri = {Ri
f , R

i
s, R

i
t }. (9)

For a sequence I with N frames, we construct a feature set
R = {Ri}Ni=2 by extracting GTIs from the second frame
to the N -th frame. During the training stage of BoVW, we
randomly select local features from the training set and and

cluster them into K “words” using any clustering method,
such as K-means [29]. During the testing stage, BoVW

model finds the corresponding “word” for each feature in

the feature set R and then uses the histogram of “words” as
an effective representation of I:

BGTI = B{R,K}
= B{{Ri}Ni=2,K

}
.

(10)

To remove the effect of the number of local features, we

further normalize the above representation as follows:

BGTI =
B{{Ri}Ni=2,K

}
||B{{Ri}Ni=2,K

}||1 , (11)

where || · ||1 calculates the l1 norm.
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Table 1: Results with different parameters.

Accuracy (%) P = 2 P = 4 P = 6 P = 8
K = 500 91.43 94.99 95.41 94.08
K = 1000 91.69 95.30 95.70 95.00
K = 1500 92.93 95.08 94.66 94.34

4.2. Hierarchical E-GTI

Suppose a depth sequence I with N frames can be con-
verted to a speed-insensitive sequence SM withM frames.

It is not appropriate to directly use SM in describing I, be-
cause most motion information from I is ignored in SM . To
compensate for the motion information, we extract multiple

speed-insensitive sequences to give a detailed description

of I. To achieve this, we set parameter M in Algorithm

1 to SM1 , ..., SML
, which produces L speed-insensitive se-

quences for one original sequence.

In Section 4.1, we denote BGTI as the original depth

sequence I. Similarly, we let BSML

E−GTI denote the rep-

resentation for SML
. By concatenating all representation-

s for speed-insensitive sequences, we obtain the following

representation-level fusion representation:

BIE−GTI =
[
B

SM1

E−GTI , · · ·, BSML

E−GTI

]
, (12)

which can implicitly capture the temporal information of

the original sequence I.

5. Experiments

MSRAction3D dataset, introduced in [10], contains 20

actions, performed two or three times by ten subjects facing

the depth camera, resulting in 567 depth sequences. DHA

dataset, proposed in [11], contains 23 action categories, per-

formed by 21 people, resulting in 483 depth sequences. M-

SRGesture3D dataset, proposed in [12], is a hand-gesture

dataset. It contains 12 gestures, performed two or three

times by each subject, resulting in 336 depth sequences.

SKIG dataset, proposed in [13], contains 1080 hand-gesture

depth sequences. It contains 10 gestures, performed with

hand (i.e., fist, flat and index) by 6 subjects under two dif-

ferent illumination conditions and three backgrounds.

The recognition is conducted using a non-linear SVM

with a homogeneous Chi2 kernel [30] and the parameter

“gamma”, which decides the degree of homogeneity of the

kernel, is set to 0.8. We use the “sdca” solver for SVM,
besides other default parameters from vlfeat library1. To

ensure that the results reported are consistent with those of

other works, we adopt the same cross-validation methods

as those given in [10], [11], [12] and [13]. It is to be noted

that cross-subject validation is adopted for MSRAction3D

dataset, with subjects#1, 3, 5, 7, 9 for training and subjects
#2, 4, 6, 8, 10 for testing [10].

To test the effect of Radon Transform and GTI, we

1Non-linear SVM classifier is implemented in http://www.
vlfeat.org/applications/caltech-101-code.html

Table 2: Evaluation of GBI and GTI

Accuracy(%) BGBI BGTI

MSRAction3D 90.33% 95.70%

MSRAction3D-Order 38.63% 71.37%

Table 4: Comparison of our method and the previous approaches on four benchmark
datasets. The word “Best” means the best published results so far.

3D Action 3D Gesture
3D Action Dataset

MSRAction3D DHA MSRGesture3D SKIG

Original 74.70% [10] 86.80% [11] 88.50% [12] 88.70% [13]

Best 95.62% [31] 95.00%[32] 96.23% [33] 93.80% [34]

Bag of GTIs 95.70% 91.92% 96.42% 90.87%

Hierarchical E-GTIs 97.22% 95.44% 98.80% 93.88%

Table 5: Evaluation of the robustness to partial occlusions

3D Action Dataset ROP [12] ROP+SC [12] n-RT RT

MSRAction3D - - 88.20% 95.70%
MSRAction3D-Occlusion1 83.05% 86.17% 73.16% 90.55%
MSRAction3D-Occlusion2 84.18% 86.50% 51.33% 93.45%
MSRAction3D-Occlusion3 78.76% 80.09% 80.16% 91.3%
MSRAction3D-Occlusion4 82.12% 85.49% 79.87% 88.61%
MSRAction3D-Occlusion5 84.48% 87.51% 62.08% 87.39%
MSRAction3D-Occlusion6 82.46% 87.51% 71.66% 89.07%
MSRAction3D-Occlusion7 80.10% 83.80% 70.89% 91.52%
MSRAction3D-Occlusion8 85.83% 86.83% 80.56% 94.13%

use BGTI , which is generated by performing Bag of GTIs

model on original depth sequences, as the baseline repre-

sentation. Let K be the number of clusters for K-means
and P be the number of projections for Radon Transfor-
m. When P equals p, we conclude that θj in Eq. 8 equals
pi/p, pi/p ∗ 2, ...pi/p ∗ p. To select proper K and P , we
test the effect on recognition accuracy of one parameter and

keep the other parameter with default value. As shown in

Table. 1,K and P change respectively from 500 to 1500 at
an interval of 500, and from 2 to 8 at an interval of 2. We set

default values of parameters K and P as 1000 and 6, using
which we obtain the highest accuracy of 95.70%.

5.1. GBI & GTI

To verify the significance of encoding directions, we

compare BGTI and BGBI on a new dataset, named

MSRAction3D-Order. To create this dataset, for each ac-

tion sequence in the original MSRAction3D dataset, we in-

vert its temporal order (e.g., the first frame becomes the last

frame) to generate a new sequence. As a results, the num-

ber of action sequences in MSRAction3D-Order dataset

is doubled, i.e., 567 × 2 = 1134. Table 2 shows the
performances of BGTI and BGBI on MSRAction3D and

MSRAction3D-Order datasets. As expected, BGBI per-

forms worse on MSRAction3D-Order dataset than on M-

SRAction3D dataset. This is because one action type and

its opposite type share similarities in motion shapes, which

bring extra challenges to classification. Unlikely, BGTI

achieves accuracy of 71.37%, which is higher than that of
BGBI . This improvement is justifiable because GTI cap-
tures directional information, which is essential to distin-

guish one action type from its opposite type.
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Table 3: Evaluation of hierarchical structure. The second column named “0” refers to applying BoVW model on original sequence.

Accuracy (%) 0 1 2 3 4 1+2 1+3 1+4 2+3 2+4 3+4 1+2+3 1+2+4 1+3+4 2+3+4 1+2+3+4
MSRAction3D 95.70 85.18 94.79 94.78 95.20 93.89 94.45 95.58 97.22 97.14 96.36 95.58 96.68 96.27 97.27 94.14

MSRAction3D-Speed 87.17 83.00 86.52 85.72 86.70 87.44 90.80 89.64 90.31 90.16 89.11 91.30 90.06 90.85 91.03 90.57
DHA 91.92 84.26 89.02 93.58 91.51 91.51 92.96 91.92 93.16 92.75 93.58 94.40 93.58 95.03 94.61 95.44

MSRGesture3D 96.42 93.71 96.42 96.42 97.32 97.32 98.21 97.91 98.21 97.32 98.21 98.51 98.51 98.80 98.21 98.80
SKIG 90.87 84.71 89.48 91.85 91.48 90.83 92.86 92.21 92.63 92.59 93.05 92.68 92.91 93.37 93.65 93.88

5.2. Hierarchical E-GTI

We convert original sequences into speed-insensitive se-

quences with 10, 20, 30, 40 frames. We use BGTI , B
S10

GTI ,

BS20

GTI , B
S30

GTI , B
S40

GTI (short for 0,1,2,3,4) (see Table 3) to

describe the original sequence and the four corresponding

speed insensitive sequences. Hierarchical E-GTI is denoted

as BIGTI , which is the representation-level fusion of B
S10

GTI ,

BS20

GTI , B
S30

GTI , B
S40

GTI . Highest accuracies are observed with

hierarchical E-GTI. Our method is compared with related

works in Table 4, where we achieve better results on al-

l datasets than the state-of-the-art methods.

5.3. Evaluation of Robustness

Robustness to partial occlusion: The partial occlusions
are simulated using MSRAction3D dataset as described in

[12]. Each volume of the depth sequence is divided into two

parts along y, x and t coordinates, resulting in eight sub-
volumes. The occlusion is simulated by ignoring the depth

data in one of the subvolumes. In Table 5, RT achieves an

accuracy of around 90%, which outperforms Random Oc-
cupancy Pattern (ROP) and “ROP+sparse coding”. Further,

we use a pixel value-based descriptor, instead of RT, for

describing GTI. We refer to this method as “n-RT”, which

concatenates all pixel values of GTI as a local feature. RT

outperforms “n-RT”, because RT can suppress the effects of

noisy data and partial occlusions (see Fig. 7).

Robustness to pepper noise: To simulate depth discon-
tinuities in depth sequences, we add pepper noise in varying

percentages (of the total number of image pixels) to depth

images, as shown in Fig. 8 (a). Despite the effects of pep-

per noise, our method achieves more than 94% recognition
accuracy on MSRAction3D dataset, as shown in Fig. 8 (b).

Robustness to speed: Based on MSRAction3D dataset,
we construct an MSRAction3D-Speed dataset, by randomly

selecting half the number of frames from testing sequences

and then concatenating them to form new sequences. By

comparing linear sampling method with our random sam-

pling method (see Fig. 9), we conclude that action speeds

in our new dataset change dramatically in a non-linear man-

ner. We still achieve an accuracy of 87.17%, which demon-
strates the robustness of our method to speed variations.

5.4. Time Cost
We compute the computation time of our method with

the default parameters ofK = 1000 and P = 6. The average
computational time required for extracting a GTI is 0.0363

second on a 2.5GHzmachine with 8GB RAM, usingMatlab
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Figure 8: (a) Images affected by increasing percentages of pepper noise: 1%, 2.5%,
5%, 7.5% and 10%. (b) Recognition results on MSRAction3D dataset with different
percentages of pepper noise.

(a)  A depth sequence of action front-clap from MSRAction3D dataset

(b)  Linear sampling (c)  Random sampling

# 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8

# 2 # 4 # 6 # 8 # 1 # 2 # 3 # 8

Figure 9: Comparison between linear sampling and random sampling.

R2012a. The time for calculating the Radon Transform of

a GTI is 0.0019 second. The overall computational time for

calculating a proposed feature is thus about 0.0381 second.

6. Conclusions
This paper presents a bag of GTI model to efficient-

ly encode the information carried within motion regions

and inter-frame motion directions. This model is robust a-

gainst partial occlusions and depth discontinuities since the

motion regions in GTIs are encoded by RT. To deal with

varying speeds, we convert the original depth sequence in-

to speed-insensitive sequences and propose a hierarchical

GTIs framework to represent the action in the original se-

quence. As a result of using speed-insensitive sequences,

our method is insensitive to the subject’s speed variation-

s. Our method is extensively evaluated on four benchmark

datasets designed for 3D action/gesture recognition, and

achieves state-of-the-art results on these datasets.
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