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Abstract—Reconstruction of hyperspectral imagery from spec-
tral random projections is considered. Specifically, multiple
predictions drawn for a pixel vector of interest are made from spa-
tially neighboring pixel vectors within an initial non-predicted re-
construction. A two-phase hypothesis-generation procedure based
on partitioning and merging of spectral bands according to the
correlation coefficients between bands is proposed to fine-tune
the hypotheses. The resulting prediction is used to generate a
residual in the projection domain. This residual being typically
more compressible than the original pixel vector leads to improved
reconstruction quality. To appropriately weight the hypothesis
predictions, a distance-weighted Tikhonov regularization to an
ill-posed least-squares optimization is proposed. Experimental re-
sults demonstrate that the proposed reconstruction significantly
outperforms alternative strategies not employing multihypothesis
prediction.

Index Terms—Compressed sensing, hyperspectral data, mul-
tihypothesis prediction, principal component analysis, Tikhonov
regularization.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) captures a dense spec-
tral sampling of reflectance values over a wide range

of the spectrum. While the rich spectral information is ex-
pected to improve the performance of image-analysis tech-
niques, this improvement often comes with the cost of
computational complexity, over-dimensionality, and statistical
ill-conditioning. Furthermore, high-dimensional HSI data also
increases communication costs associated with the transmission
of data from the remote sensor. As a consequence, some form
of spectral dimensionality reduction is almost always required
before HSI can be used in image-analysis applications; if this
can be accomplished prior to downlink of the data set from
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the remote sensor, communications costs can be significantly
alleviated.

There has been interest in using random projections effectu-
ated directly within the hardware of the hyperspectral sensor
to simultaneously reduce dimensionality as the HSI data set
is sensed, and sensor architectures for such random-projection-
based spectral imaging have been proposed (e.g., [1]). In such a
paradigm, the computational cost of dimensionality reduction is
shifted from the resource-constrained remote-sensing platform
to a more-capable ground-based receiver which is then bur-
dened with the task of reconstruction of the HSI data set from
the random projections. There has been, of course, significant
recent interest in using compressed sensing (CS) (e.g., [2]) to
provide such reconstruction. Alternatively, [3] proposed a re-
construction strategy—compressive-projection principal com-
ponent analysis (CPPCA)—which recovers an HSI data set
using principal component analysis (PCA). Specifically, from
the random projections, the CPPCA receiver recovers not only
the coefficients associated with the PCA transform, but also an
approximation to the PCA transform basis itself. Experimental
results [3], [4] have demonstrated significant advantage for
CPPCA as compared to various CS reconstructions for HSI
data sets in terms of both reconstruction quality as well as
computational complexity.

Irrespective of the specific reconstruction algorithm used,
there has been a focus in recent literature in improving re-
constructions from random projections via the use of predic-
tion followed by reconstruction from the resulting projection-
domain residual. This approach has been particularly prevalent
in the CS reconstruction of video wherein predictions are
made temporally from one frame to the next (see [5] for a
comprehensive survey). However, it is also possible to apply
prediction and residual reconstruction spatially within a single
image—[6], for example, reconstructs still images by deriving
a prediction for an image block from the spatially surrounding
blocks within an initial reconstruction.

In this paper, we propose to incorporate this idea of spatial
prediction and residual reconstruction into the reconstruction
from random projections of HSI data sets. The focus is on the
use of multihypothesis (MH) prediction [7] in which multiple
hypotheses are created and then combined to yield a composite
prediction superior to any of the constituent single-hypothesis
predictions. Central to our discussion is a formulation of
the MH prediction procedure in the domain of the random
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projections as well as a hypothesis-generation procedure based
on spectral-band partitioning; as this formulation results in an
ill-posed optimization, we resort to Tikhonov regularization
[8] which is widely used to yield tractable solutions to such
ill-posed problems. In experimental results, we compare our
proposed Tikhonov-based MH regularization against several
straightforward reconstruction techniques which do not employ
MH prediction. We find that our proposed approach yields
superior reconstruction across a broad range of subsampling
rates.

The remainder of the manuscript is organized as follows. In
Section II, several techniques—including those based on CS
and CPPCA—for the reconstruction from random projections
of hyperspectral data are reviewed. Then, in Section III, we
employ the general strategy of MH prediction to the problem
of HSI reconstruction, focusing as well on the generation of
hypotheses for HSI data. In Section IV, experimental compar-
ison of various algorithms is presented. Finally, in Section V,
some concluding remarks are made.

II. RECONSTRUCTION FROM RANDOM PROJECTIONS

Consider a data set of M vectors X = [x1 . . .xM ], where
each xm ∈ R

N . We assume that the signal-acquisition device
applies an N ×K orthonormal random projection P to obtain
random projections Ỹ = [ỹ1 . . . ỹM ] where each ỹm = PTxm

has dimension K(K � N); K/N is referred to as the sub-
rate hereafter. To reconstruct an approximation X̂ from the
projections Ỹ, we could apply one of the several existing
algorithms; we overview three below, specifically, multitask
Bayesian compressive sensing (MT-BCS) [9] in Section II-A,
CPPCA [3] in Section II-B, and the recently proposed class-
dependent CPPCA (C-CPPCA) [10] in Section II-C.

A. Multitask Bayesian Compressive Sensing

CS, in brief, produces a sparse signal representation directly
from a small number of projections onto another basis, re-
covering the sparse transform coefficients via nonlinear recon-
struction. The main tenet of CS theory holds that, if signal
x ∈ R

N can be sparsely represented (i.e., using only L nonzero
coefficients) with some basis, then we can recover x from
K-dimensional projections ỹ = PTx under certain conditions.
For recovery of a set of multiple, possibly correlated vectors
X = [x1 . . .xM ], there have been proposals for multi-vector
extensions of CS under the name of “multitask” [9] CS; these,
in turn, link closely to a larger body of literature on “simul-
taneous sparse approximation” (e.g., [11]–[15]). Below, we
focus on MT-BCS [9] which introduces a hierarchical Bayesian
framework into the multi-vector CS-recovery problem to share
prior information across the multiple vectors.

B. Compressive-Projection Principal Component Analysis

CPPCA [3] is driven by projections at the sensor onto lower-
dimensional subspaces chosen at random. The CPPCA receiver,
given only these random projections, recovers not only the

coefficients associated with the PCA transform, but also an
approximation to the PCA transform basis itself.

CPPCA reconstruction of a set of randomly projected vectors
first entails an eigenvector-reconstruction process based on an
approximation that uses Ritz vectors [16] as close representa-
tions of orthonormal projections of eigenvectors. Specifically,
the PCA transform of xm in data set X = [x1 . . .xM ] is x̂m =
UTxm, where N ×N transform matrix U emanates from the
eigendecomposition of ΣX; i.e.,

ΣX = UΛUT (1)

where U contains the N unit eigenvectors of ΣX column-wise.
CPPCA reconstruction uses the first L Ritz vectors (essentially,
the eigenvectors of Σ̃

Ỹ
= PTΣXP) to obtain approximations

of the first L principal eigenvectors in U corresponding to the
L largest eigenvalues in Λ. These approximate eigenvectors are
then assembled into N × L matrix Ψ. The reconstruction of the
data set X is then produced in a pseudoinverse-based recovery
of the PCA coefficients

X̂ = Ψ(PTΨ)+Ỹ. (2)

The number of eigenvectors to recover is determined by the
heuristic L = round(K/ logN) as proposed in [17]. The reader
is referred to [3] for greater detail.

C. Class-Dependent Compressive-Projection Principal
Component Analysis

C-CPPCA [10] can be viewed as an extension of the original
CPPCA that incorporates classification into the reconstruction.
For this approach, the sender-side sensing procedure is ex-
actly the same as that employed in original CPPCA. At the
receiver, the random projections Ỹ are first classified into one
of several groups using a pixel-wise classification algorithm,
such as a support vector machine (SVM). After the grouping
procedure, CPPCA reconstruction is employed for each class
independently.

More specifically, a small set of “exemplars” is chosen ran-
domly from the projections Ỹ; these exemplars are recovered
using MT-BCS (which is efficient at recovering a small number
of samples, unlike CPPCA which requires more samples to
be effective). These reconstructed samples are then clustered
into different groups, producing “pseudo” a priori label infor-
mation (training data). A trained pixel-wise classifier is then
employed to classify each pixel in each Ỹ into one of K0

classes. Thus, each Ỹ is further partitioned into K0 groups, Ỹk,
k = 1, . . . ,K0, based on this classification. Finally, traditional
CPPCA reconstruction is employed individually on each class.

It was shown in [10] that the C-CPPCA strategy outperforms
the original CPPCA for HSI. This can be attributed to multiple
modes in the data distribution arising from the presence of
multiple classes/objects in the image. Hence, the C-CPPCA
method employs statistics pertinent to each class as opposed
to the average statistics over all classes. The resulting recon-
struction then exploits individual local geometrical distribu-
tions as provided by the covariance matrix of each class as
opposed to a single aggregated distribution as is employed in
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the original CPPCA. A detailed discussion for C-CPPCA can be
found in [10].

III. RECONSTRUCTION USING MH PREDICTION

In this section, we propose a reconstruction algorithm based
on MH prediction. The algorithm is driven by the idea that, if a
prediction is similar to the target sample, then the prediction
residual will be more amenable to reconstruction since the
residual is typically more compressible than the original pixel
vector. Specifically, suppose that x is a pixel vector (hyperspec-
tral signature) from an HSI data set, and x̄ is a prediction which
satisfies x̄ ≈ x. The residual is r = x− x̄. With a N ×K
orthonormal random projection P, the projection of r is q =
PT r = ỹ −PT x̄. The final reconstruction of ỹ is calculated
as x̂ = x̄+ Reconstruct(q,P), where Reconstruct(·) is some
suitable signal reconstruction (e.g., MT-BCS or CPPCA). The
general idea of reconstruction from prediction residuals in the
random-projection domain has been explored extensively in
prior literature, particularly for the CS reconstruction of video;
the reader is referred to [5] for a comprehensive overview.
Below, we describe the process that we propose for generating
predictions specifically for HSI.

A. MH Prediction

To produce a highly compressible residual, one should create
a prediction that is as close as possible to x, which implies that
the following optimization problem is desired:

x̄ = argmin
z∈P(Xref )

‖x− z‖22 (3)

where P(Xref) is the set of predictions that can be made from
some reference data set, Xref (more on Xref below). However,
since x is unknown in CS or CPPCA reconstruction, solving
(3) directly is infeasible. Instead, one approach is to reformu-
late (3) as

x̄ = argmin
z∈P(Xref )

‖x̂− z‖22 (4)

wherein some initial reconstruction, x̂, is used as a proxy for
x in (3). Many forms of CS reconstruction for video take this
general approach, e.g., [18], [19].

An alternative is to recast the optimization of (3) from the
ambient signal domain of x into the measurement domain of ỹ;
specifically

x̄ = argmin
z∈P(Xref )

‖PTx−PT z‖22 = argmin
z∈P(Xref )

‖ỹ −PT z‖22. (5)

The Johnson–Lindenstrauss (JL) lemma [20] holds that L
points in R

N can be projected into a K-dimensional subspace
while approximately maintaining pairwise distances as long
as K is sufficiently large with respect to L. Specifically, for
ε > 0 and every set Q of L points in R

N , there exists mapping
f : RN → R

K such that, for all x1, x2 ∈ Q

(1− ε)‖x1 − x2‖22 ≤ ‖f(x1)− f(x2)‖ ≤ (1 + ε)‖x1 − x2‖22
(6)

as long as K ≥ O(ε−2 logL). This suggests that the solution
of (5) will likely coincide with that of (3).

Instead of choosing a single prediction, or hypothesis, to
reformulate (5), we aim to find an optimal linear combina-
tion of all hypotheses contained in the reference set P(Xref);
i.e., (5) becomes x̄ = Hŵ where

ŵ = argmin
w

‖ỹ −PTHw‖22. (7)

Here, H is a matrix of dimensionality N ×KH whose columns
are KH possible hypotheses in P(Xref), and ŵ is a column
vector which represents a linear combination of the columns of
H. However, because usually K 	= KH , the ill-posed nature of
the problem requires some kind of regularization to differentiate
among the infinite number of possible linear combinations
which lie in the solution space of (7).

The most common approach to regularizing a least-squares
problem is Tikhonov regularization [8] which imposes an �2
penalty on the norm of ŵ

ŵ = argmin
w

‖ỹ −PTHw‖22 + λ‖Γw‖22 (8)

where Γ is known as the Tikhonov matrix and λ is the regular-
ization parameter; this strategy for MH prediction was initially
proposed in [21]. The Γ term allows the imposition of prior
knowledge on the solution; in some contexts, it may make sense
to use a high-pass operator or a difference operator to enforce
smoothness on the solution, or, in other cases, to set Γ = I
to impose an energy constraint on the solution. In our case,
we take the approach proposed in [21] that hypotheses which
are the most dissimilar from the original pixel vector should
be given less weight than hypotheses which are most similar.
Specifically, a diagonal Γ takes the form of

Γ =

⎡
⎢⎣
‖ỹ −PTh1‖2 0

. . .
0

∥∥ỹ −PThKH

∥∥
2

⎤
⎥⎦ (9)

where h1,h2, . . . ,hKH
are the columns of H. With this

structure, Γ penalizes weights of large magnitude assigned to
hypotheses which have a significant distance from ỹ when
projected into the measurement domain. For each pixel vector,
then, ŵ can be calculated directly by the usual Tikhonov
solution

ŵ =
(
(PTH)

T
(PTH) + λ2ΓTΓ

)−1

(PTH)
T
ỹ. (10)

For the reference data set Xref , an initial reconstruction (i.e.,
using MT-BCS or CPPCA without MH prediction) of X̂ is
used.1 Furthermore, once we have reconstructed the data set
via MH prediction and residual reconstruction, we can use
the current reconstruction as the reference data set Xref for a
subsequent MH prediction and residual reconstruction, further
improving the quality of the reconstructed data in an iterative

1Alternatively, some other hyperspectral data set(s) could be used as a
dictionary for Xref depending on availability.
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Fig. 1. MH prediction and residual reconstruction as post-processing for HSI reconstruction.

Fig. 2. Generation of multiple hypotheses from a search window with window
size ω. Red indicates the current pixel vector of interest; green indicates a
possible hypothesis pixel vector.

fashion. A general diagram of this iterative post-processing
algorithm is shown in Fig. 1.

We note that others have suggested an alternative to the
Tikhonov regularization used in (8); specifically, [22], [23]
consider the CS reconstruction of video using multihypothesis
frame-to-frame predictions, effectively assuming that the pre-
diction weights w are sparse and consequently imposing an �1
regularization on w. However, we argue in [5], [6] that such
an assumption of sparsity is needlessly restrictive for video
prediction since we actually anticipate high correlation among
the candidate predictions (i.e., non-sparse weights). The same
is true for the hyperspectral prediction we consider here due to
the spatial coherence of the hypothesis-generation process that
we describe next.

B. Hypothesis Generation

Hyperspectral data usually includes a large number of ho-
mogeneous regions. For each sample, its neighboring pixel
vectors will likely share similar spectral characteristics, and
such contextual information has been employed previously for
HSI classification [24], [25]. For the present approach, multiple
hypotheses are generated for the current sample considering
all the neighboring pixel vectors in a search window with size
ω—this hypothesis-search procedure is illustrated in Fig. 2.
Next, all hypotheses are placed as columns of the hypothesis
matrix H after the following partitioning procedure.

Fig. 3. 191 × 191 matrix of cross-band correlation coefficients of the
Washington DC Mall HYDICE data set. White = ±1. Black = 0. S1, S2, S3,
and S4 are the resulting four partitions.

That is, since the spectral bands of a hyperspectral image are
correlated, they can be partitioned into several groups based on
the correlation coefficients between bands such that the bands
in each group are highly correlated with one another [26]. For
example, Fig. 3 illustrates the matrix of correlation coefficients
between bands of the Washington DC Mall data set as well as
the resulting four partitions of spectral bands. This spectral-
band partitioning based on correlation coefficients is denoted
as non-uniform (NU) partitioning. An alternative spectral-band
partitioning is to simply partition the bands uniformly—i.e.,
each group has the same number of bands—this is denoted as
uniform (U) partitioning. With either of the two partitioning
methods, each hypothesis pixel vector can be divided into
several partitions. For example, assume a N -dimensional pixel
vector is divided into four partitions using uniform parti-
tioning; then, four distinct hypothesis vectors are created by
keeping only one of the four partitions while replacing the
other partitions with zeros (i.e., “zero padding”) to form a
N -dimensional vector. This process for hypothesis generation
based on spectral-band partitioning is illustrated in Fig. 4.

If KH hypotheses are drawn from the search window, and
α partitions are used for spectral-band partitioning, then the
total number of hypotheses in H is αKH . The motivation
for this hypothesis generation from the partitioned spectral
bands is such that the weights calculated for the hypotheses
become adjustable for different spectral partitions. The details
are illustrated in Fig. 5 with α = 4 spectral-band partitions. One
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Fig. 4. Generation of hypotheses via non-uniform or uniform spectral-band
partitioning and zero padding.

Fig. 5. Formation of a prediction using multiple hypotheses and the corre-
sponding weights. hSj

(j = 1, 2, 3, and 4) is the hypothesis set generated
using the jth partition of the hypotheses with zero padding. whSj

are the

corresponding set of weights for hypothesis set hSj
.

issue is the obtaining of the correlation coefficients (Fig. 3)
of the original data set to perform NU spectral-band parti-
tioning since we have only the reconstructed data set at the
reconstruction side. However, we assume that the correlation
coefficients between the spectral bands are fixed and known
a priori for a given hyperspectral sensor since all images taken
by this sensor would have similar correlation coefficients. Other
alternatives would be to estimate the correlation coefficients
from the initial reconstructed data set or simply use uniform
spectral-band partitioning exclusively.

Spectral-band partitioning based on the correlation coeffi-
cients may not accurately capture the true correlation between
bands since the data set at hand is the reconstructed data
set, not the original. To analyze the accuracy of spectral-band
partitioning based on the correlation coefficients, we take the
Washington DC Mall data set as an example. According to the
correlation-coefficient map of the original data set in Fig. 3,
the spectral bands are divided into four partitions with band
indices 1–55, 56–102, 103–132, and 133–191. For each pixel
vector in the image, we generate its hypothesis matrix H
following the procedures described in Figs. 2 and 4 with
non-uniform partitioning, storing them in the order as shown
in Fig. 5.

For the mth pixel vector in the data set, we can calculate
the Euclidean norms between the projection of the original

Fig. 6. Mean distance vector for all pixel vectors in the CPPCA-reconstructed
Washington DC Mall data set at K/N = 0.2. Search window size ω = 3; α =
4 partitions in spectral-band partitioning are used for hypothesis generation.

pixel vector and the projections of all hypothesis vectors, which
are the diagonal terms of Γ in (9). For projected vector ỹm,
we define a distance vector Dm = [‖ỹm −PTh1‖2 . . . ‖ỹm −
PThαKH

‖2], where h1, . . . ,hαKH
are the αKH columns of

the H matrix for ỹm. In other words, the jth spectral-band
partition generates a set of KH hypotheses in H; this subset has
a distance vector Dm(j) = [‖ỹ −PTh(j−1)×KH+1‖2 . . . ‖ỹ −
PThj×KH

‖2], where h(j−1)×KH+1, . . . ,hj×KH
are KH

columns in H. As a consequence, each pixel vector is associ-
ated with a distance vector calculated using its corresponding
projection and hypothesis matrix. For a hyperspectral image
with M pixel vectors, the global mean distance vector, D̄, is
calculated as

D̄ =
1

M

M∑
m=1

Dm =
1

M

M∑
m=1

[Dm(1) . . .Dm(α)]

=
[
D̄(1) . . . D̄(α)

]
(11)

where D̄(j) is the mean calculated over the data set for
spectral-band partition j(j = 1, . . . , α). For example, the mean
distance vector D̄ for all pixel vectors in the initial CPPCA-
reconstructed Washington DC Mall image is shown in Fig. 6
for α = 4 spectral-band partitions.

We argue that the last two spectral-band partitions depicted
in Fig. 6 can be merged together since the distance between the
original pixel vector and the hypothesis vector in the projection
domain is very close for hypotheses formed with the third and
fourth partitions, respectively. To make this merging decision
automatically, we calculate the (scalar) mean of the D̄(j) vector
as μj which we then normalize such that μj ∈ [0, 1]. Two
consecutive partitions are merged together if |μj − μj+1| ≤
σ, where σ is a threshold (we use σ = 0.1 in subsequent
experiments).

Consequently, we develop a two-phase spectral-band parti-
tioning process. In the first phase, the spectral-band partitioning
is based on the correlation coefficients; in the second phase,
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TABLE I
SPECTRAL-BAND PARTITIONS FOR NON-UNIFORM PARTITIONING

the corresponding partitions of the hypotheses which share
similar distances in the projection domain are merged together.
The resulting spectral-band partitions for different hyperspec-
tral images are tabulated in Table I. On the other hand, for
uniform partitioning, we simply choose four partitions for the
first phase and two partitions for the second phase to compare
with non-uniform partitioning. We note that both the NU and
U partitioning schemes we consider here are rather simple;
a more sophisticated process—such as [27] which uses edge
detection on the correlation-coefficient map—could equally be
employed.

C. Stopping Criterion

The aforementioned multihypothesis–prediction and
residual-reconstruction procedures are iterated to achieve high-
quality reconstruction. As a criterion to stop these iterations, we
apply cross validation [28] to predict the performance. Specif-
ically, the orthonormal random projection P = [PR,PH],
where P ∈ R

N×K , PR ∈ R
N×(K−L0), PH ∈ R

N×L0 , and
L0 � K. For a hyperspectral image of M pixel vectors X ∈
R

N×M , PR is used to generate random projections ŶR ∈
R

(K−L0)×M for reconstruction, and PH is used to generate
random projections ŶH ∈ R

L0×M as a holdout set for the
performance test. In other words, Ŷ = [ŶR; ŶH]. The residual
calculated in the projected domain using the holdout set is

R =
∥∥∥PT

HX−PT
HX̂

∥∥∥
2
=

∥∥∥ŶH −PT
HX̂

∥∥∥
2
. (12)

This means that, if X̂ is close to X, then R should be small.
For each iteration, we obtain a residual, R, for the perfor-

mance test. If R for the current iteration is smaller than that
in the previous iteration, we can predict that the quality of the
reconstructed image in the current iteration is better and thus
continue the iteration. We can set a threshold τ that measures
the difference in residual R between two successive iterations
to terminate the iteration. Algorithm 1 details the MH-CPPCA
algorithm using this stopping criterion.

Algorithm 1 MH-CPPCA

Input: Ŷ = [ŶR; ŶH ], P = [PR,PH ], X̂, L (number of
Ritz vectors used in CPPCA reconstruction), ω (search win-
dow size), S = {S1,S2} (spectral-band partitions in the first
and second phase of spectral-band partitioning, respectively),
MaxIter (maximum number of iterations), MaxPhase = 2
(maximum number of phases), τ (a positive threshold).

Output: X̂.
Initialization: R0 = +∞.
for j = 1 → MaxPhase

Set i = 1
while i ≤ MaxIter do

(1) X̄i = MH_Prediction(X̂, ŶR,PR,S
j , ω)

(2) Ri = ŶR −PR
T X̄i

(3) R̂i = CPPCA(Ri,PR, L)

(4) Update X̂ ← X̄i + R̂i

(5) Calculate Ri = ŶH −PH
T X̂

if Ri > Ri−1 or Ri−1 −Ri < τ then
Break

else
i ← i+ 1

end if
end while

end for

One drawback of using a holdout set for performance testing
is that we sacrifice L0 projections in reconstruction, which leads
to a slightly degraded reconstruction as compared to that ob-
tained in the absence of a holdout set. Experimentally, we have
found that 5 to 7 iterations in each spectral-band-partitioning
phase are sufficient to achieve an appropriate tradeoff between
the quality of the reconstructed image and the runtime of the
algorithm. In the experimental results to follow, we use a fixed
6 iterations in each phase of spectral-band partitioning to sim-
plify the algorithm.

IV. EXPERIMENTAL RESULTS

We now validate our proposed approach with several popular
HIS data sets, presenting experimental results that demonstrate
the benefits of MH prediction for the reconstruction of HSI
from random projections. Seven algorithms are compared, in-
cluding the original CPPCA [3], C-CPPCA [10], CS recon-
struction in the form of MT-BCS [9], and MH versions of both
CPPCA and C-CPPCA. For the MH versions of CPPCA, we
consider both non-uniform (NU) and uniform (U) partitioning
for both CPPCA and C-CPPCA, resulting in variants which we
call MH(NU)-CPPCA, MH(U)-CPPCA, MH(NU)-C-CPPCA,
and MH(U)-C-CPPCA. All the algorithms are investigated un-
der different subrates. Since C-CPPCA involves classification,
we use K-means clustering with 6 classes for each hyperspec-
tral data set.

For CPPCA, we use the implementation available from the
CPPCA website.2 For MT-BCS, we use the same random
projections as used for CPPCA, a Daubechies length-4 wavelet
as the sparsity basis, and the MT-BCS implementation from its
authors.3 We note that recent work in dictionary learning (DL)
(e.g., [29], [30]) has indicated that CS reconstruction using
a learned dictionary can outperform that using a fixed basis
(e.g., [29]). However, such DL-based reconstruction typically
requires that the dictionary be learned on separate training data

2http://www.ece.msstate.edu/~fowler/CPPCA/
3http://people.ee.duke.edu/~lcarin/BCS.html
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in its full dimensionality, precluding its use for the data sets
in question for which we lack suitable training data. That said,
we have made comparisons between DL-based reconstruction
and CPPCA elsewhere [31] in cases for which training data
was available and found that, while DL-based reconstruction
can indeed outperform fixed-basis MT-BCS for hyperspectral
imagery, it was inferior to even the original CPPCA. Likewise,
even though there exist a myriad of techniques to perform CS
reconstruction of individual hyperspectral pixel vectors from
random projections, our previous results [4] indicate that such
“single-task” reconstruction is vastly inferior to “multitask,”
multiple-vector reconstruction. As a consequence, we focus on
fixed-basis MT-BCS as the benchmark for reconstruction based
on CS rather than CPPCA.

A. Experimental Hyperspectral Data

The first experimental HSI data set is Washington DC Mall
taken by the Hyperspectral Digital Imagery Collection Exper-
iment (HYDICE) sensor on August 23, 1995 [32]. A total of
210 bands were collected in the 0.4- to 2.40-μm region. The
water-absorption bands were removed resulting an image with
191 bands. In our experiment, we crop the original image to
spatial dimensions 307 × 307.

The second data set used in our experiments, University of
Pavia, is a urban image acquired by the Reflective Optics Sys-
tem Imaging Spectrometer (ROSIS) [33]. The ROSIS sensor
generates 115 spectral bands ranging from 0.43 to 0.86 μm
and has a spatial resolution of 1.3 m per pixel. The image has
103 spectral bands with the 12 noisiest bands removed and a
spatial coverage of 610 × 340 pixels.

The next data set employed was acquired using the National
Aeronautics and Space Administration’s Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) sensor and was col-
lected over northwest Indiana’s Indian Pines test site in June
1992.4 The image has 145 × 145 pixels and 220 bands in the
0.4- to 2.45-μm region of the visible and infrared spectrum with
a spatial resolution of 20 m.

The final data set, also from the AVIRIS sensor, is the
Low Altitude data set. This image has 512 × 512 pixels and
224 bands. False-color images of all four data sets are shown
in Fig. 7.

B. Optimizing Parameters

An important parameter involved in MH prediction is the
search-window size, ω, used in hypothesis generation. In this
section, we analyze the effect of the search-window size in
terms of the quality of the final reconstructed HSI as well as
the execution time of the algorithm.

To measure the quality of the reconstructed image X̂ =
[x̂1 . . . x̂M ], we use both signal-to-noise ratio (SNR) and
spectral-angle distortion, as was done in [10]. We use a vector-
based SNR measured in dB; i.e.,

SNR(xm, x̂m) = 10 log10
var(xm)

MSE(xm, x̂m)
(13)

4ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/

Fig. 7. False color images: (a) Washington DC Mall, using bands 30, 40,
and 50 for red, green, and blue, respectively; (b) Indian Pines, using bands
10, 20, and 30 for red, green, and blue, respectively; (c) University of Pavia,
using bands 20, 40, and 60 for red, green, and blue, respectively; and (d) Low
Altitude, using bands 40, 50, and 60 for red, green, and blue, respectively.

Fig. 8. Average SNR for subrate K/N = 0.2 for Indian Pines for various
window-search sizes.

where var(xm) is the variance of the components of vector xm,
and the mean squared error (MSE) is

MSE(xm, x̂m) =
1

M
‖xm − x̂m‖22. (14)

The average SNR is then the vector-based SNR of (14) averaged
over all vectors of the data set. Alternatively, we can define
an average spectral-angle distortion by averaging the spectral
angles in degrees between the reconstructed hyperspectral pixel
vectors and their corresponding original pixel vectors of the
data set, i.e., ξ̄ = mean(ξm) where

ξm = ∠(xm − x̂m). (15)

A set of window sizes, ω ∈ {1, . . . , 8}, is used for test-
ing. Figs. 8–10 show the reconstruction performance of four
MH-based algorithms at various search-window sizes for hy-
pothesis generation. From these figures, we can conclude that
larger search-window size does not necessary lead to higher
reconstruction quality since some data sets may contain com-
plex and mixed materials. In such a case, hypothesis pixel
vectors drawn from a large search window could have spectral
signatures rather different from the pixel vector of interest. We
also find that using ω = 4 takes more than twice the execution
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Fig. 9. Average SNR for subrate K/N = 0.2 for Washington DC Mall for
various window-search sizes.

Fig. 10. Average SNR for subrate K/N = 0.2 for University of Pavia for
various window-search sizes.

Fig. 11. Execution time for one iteration of MH prediction in MH(NU)-
CPPCA for subrate K/N = 0.3 for Indian Pines for various search-window
sizes. A quadcore 2.67-GHz machine is used.

time of ω = 3, yet does not yield very much performance gain
in terms of SNR. Specifically, Fig. 11 shows the execution
time of one iteration of MH prediction in MH(NU)-CPPCA for

TABLE II
RECONSTRUCTION TIME FOR INDIAN PINES FOR SUBRATE K/N = 0.3

TABLE III
AVERAGE SNR IN dB

various search-window sizes. To balance between the runtime
and the reconstruction quality, we fix ω = 3 in all subsequent
experiments.

Another important parameter is λ which controls the rel-
ative effect of the Tikhonov regularization term in the opti-
mization of (8). Many approaches have been presented in the
literature—such as the L-curve [34], discrepancy principle, and
generalized cross-validation (GCV)—for finding an optimal
value for such regularization parameters. We found that, in
practice, over all the test data sets, a value of λ ∈ [0.001,
0.05] provided the best results. In our experiments, we use
λ = {0.01, 0.007, 0.003, 0.002} for sampling subrate K/N =
{0.2, 0.3, 0.4, 0.5}, respectively.

C. SNR and Spectral-Angle Performance

We now measure the quality of the reconstructed hyperspec-
tral data sets in terms of SNR and spectral-angle distortion.



CHEN et al.: RECONSTRUCTION OF HYPERSPECTRAL IMAGERY FROM RANDOM PROJECTIONS 373

TABLE IV
AVERAGE SPECTRAL-ANGLE DISTORTION

The reconstruction performance of various algorithms under
consideration is presented in Tables III and IV. In all cases,
applying MH prediction achieves significant SNR gain over
both the original CPPCA as well as C-CPPCA. In most cases,
MH-C-CPPCA outperforms MH-CPPCA largely due to the
fact that the initial reconstructed data set using C-CPPCA has
higher SNR than that using CPPCA. We also note that, although
MT-BCS achieves the highest SNR for subrates 0.4 and 0.5
for the University of Pavia data set, such high subrates are
of limited practical interest. As can be seen in Table II,
in terms of execution time, reconstruction with MH-CPPCA
and MH-C-CPPCA is, as expected, slower than CPPCA and
C-CPPCA due to iterated MH prediction, but both are much
faster than MT-BCS.

Finally, we note that, as discussed in Section III-A, the MH
technique that we propose here can be used in conjunction
with any suitable multiple-vector reconstruction. The results
in Tables III and IV focus on MH versions of CPPCA since
the fast execution speed of CPPCA is more amenable to the
iterative reconstruction we use. Nonetheless, it is possible
to use an alternative reconstruction, such as MT-BCS. Since
MT-BCS usually requires a large amount of time to reconstruct
a single hyperspectral data set, we apply this MH-MT-BCS
reconstruction on only the Indian Pines data set which has the
smallest dimensionality among all the experimental HSI data
sets under consideration. The reconstruction performance of
MH-MT-BCS is shown in Table V. We see that, as compared to
the corresponding CPPCA-based results for this data set shown

TABLE V
RECONSTRUCTION PERFORMANCE OF MH-MT-BCS FOR INDIAN PINES

IN SNR AND SPECTRAL-ANGLE DISTORTION

in Table III, MH-MT-BCS achieves slightly higher SNR for
the higher (and less practically relevant) subrates 0.4 and 0.5,
but the MH variants of C-CPPCA perform better at the lower
subrates.

V. CONCLUSION

In this paper, we proposed exploitation of the spatial cor-
relation of neighboring pixels in the reconstruction from ran-
dom projections of hyperspectral data. For each pixel vector
in a hyperspectral data set, multiple predictions were drawn
from the spatial surrounding pixel vectors. To take advantage
of the fact that the spectral bands of a hyperspectral image
are correlated, we proposed a two-phase hypothesis-generation
procedure based on partitioning and merging of the spectral
bands according to the correlation coefficients between bands.
We formed MH prediction using a distance-weighted Tikhonov
regularization to find the best linear combination of hypotheses.
The MH prediction was then used to create a measurement-
domain residual of the signal to be recovered—such a residual
is typically more compressible than the original signal making
it more amenable to the reconstruction. The reconstructed data
sets using MH prediction showed significant gain in SNR and
spectral-angle distortion over several non-predicted reconstruc-
tion techniques.
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