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Abstract

We describea systenfor analyzinghumandriver alert-
ness. It relies on optical ow and color predicatesto
robustly track a person's head and facial featues. Our
systenclassi esrotationin all viewing directions,detects
eye/mouttocclusiondetectseyeblinking, andrecovers the
3D gazeof the eyes. We showresultsand discusshowthis
systentanbeusedfor monitoringdriver alertness.

1. Intr oduction

A systenfor classifyingheadmovementsvould beuse-
ful in warningdriverswhenthey fell asleep.Also, it could
beusedto gatherstatisticsabouta driver'sgaze.

We describea framework for analyzingmovies of driv-
ing anddeterminingwhenthedriveris not payingadequate
attentionto theroad. We usea singlecamergplacedon the
cardashboardWe focuson rotationof the headandblink-
ing, two importantcuesfor determiningdriver alertness.

Our headtracker consistof trackingthelip cornersgye
centers,and sidesof face. Automaticinitialization of all
featuress achievedusingcolorpredicates[pandconnected
componenalgorithms.

Occlusionof the eyesandmouthoften occurswhenthe
headrotatesor the eyesclose,soour systentracksthrough
suchocclusionand can automaticallyreinitialize when it
mis-tracks.We implementblink detectioranddemonstrate
thatwe canobtain3-D directionof gazefrom a singlecam-
era. Thesecomponentallow usto classifyrotationin all
viewing directionsand detectblinking, which, in turn, are
necessargomponent$or monitoringdriver alertness.

First, we describeprevious work andthendescribeour
systemin detail. We then presentresults, discussdriver
alertnessandconclude.

1.1 Previous Work

Work on driver alertnesg3] [4] [7] [8] [9] [10], to our
knowledge hasnotyetledto a systenthatworksin amov-
ing vehicle. The mostrecentof these[3], did not present
ary methodsto acquirethe driver's state. Furthertheir

methodrelieson LEDs, and usesmultiple camerago es-
timate facial orientation. A moving vehicle presentsew
challengedik e variablelighting andchangingbackgrounds.
The rst stepin analyzingdriver alertnesss to track the
head.Severalresearchersave workedon heactracking[6]
[2], andthevariousmethodsachhave their prosandcons.

1.2 Input Data

The movieswereacquiredusinga video cameraplaced
onthecardashboardThesystenrunsonanUltraSparais-
ing 320x240sizeimageswith 30 fps video. Two drivers
were tested under different daylight conditions ranging
from broaddaylightto parkinggaragesSomemovieswere
takenin moving vehiclesandothersin stationaryehicles.

1.3 Parts Usedfrom Other Reseach

A color predicatewasoriginally developedby Kjeldsen
etal. [5]. Theidea,there,is to manuallymark subsetof
the RGB color spacehatthealgorithmshouldrecognizen
futuretestimages.

Anandan$optical o w algorithm[1] producesf ne op-
tical o w. It computegheglobalmotionof ascene.

2. The Algorithm

Hereis anoverview of ouralgorithm.
1. Automatically initialize lips with color predicate and
connectedomponents
2. Automatically initialize eyes using color predicate and
connectedomponents
. Tracklip cornerswith darkline andcolor predicates
. Trackeyeswith af ne optical o w andcolor predicates
. Constructaboundingbox of headusingcolor predicate
. Determine rotation using distance betweeneye and lip
featurepointsandsidesof face
7. Determineblinking andeye disappearanaasingthe number
andintensityof pixelsin eye region
8. ReconstrucBD gazeusingconstanprojectionassumptions
9. Make inferencegegardingdriver's stateusingrotationand
eye occlusioninformation
10. Decide,usingrotationanddistanceconstraintsif eye or lip
trackingneedseinitialization
11. Repeafrom step3 for next frame
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2.1 Initializing Lip and Eye Feature Points

2.1.1 Automatic Lip Initialization

A colorpredicatevasgeneratedising7 imagesof peoples
lips. A few of thetrainingimagesogethemith theirmanu-
ally drawnlip regionsandautomaticallyselectedip colored
pixelsby the color predicateareshavnin Fig 1.

Figure 1. lip color predicate training.

The reasorfor the saltandpeppemoisethroughoutthe
image is that backgroundshave lip-like colors in them.
Also, partsof the faceswere lip coloreddue to lighting
conditions.Fig 2 shavs the resultsof runningthelip color
predicateon non-trainingimages. After obtainingthis lip

Figure 2. color predicate non-trained images.

image, we apply a connecteccomponentalgorithmto it,

andthebiggestip coloredregionis identi ed asthemouth.
We computeedgesof this mouthregion anddeclarethese
asthelip corners.Theinitialization doesnot needpinpoint

accurag asthelip trackeritselfwill overcomdnaccuracies.

Fig 3 shavstheresultsof automatidip initializationonthe
previously shavn inputimages.

2.1.2 Automatic Eye Initialization

Automatic eye initialization usesskin color predicatesas
well, thoughin a differentway. Fig 4 shavs inputimages,
manuallyselectedskin regions,andthe outputof the color
predicatgprogramontrainingimages.
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Figure 5. skin found in non-trained images

Fig 5 shaws outputof the skin color predicateon non-
trainingimages.Sinceeyesarenot skin, they alwaysshav
up asholes.Hencewe nd connectedomponent®f non-
skin pixelsto nd theeye holes.We nd thetwo holesthat
areabove the previously found lip region, andthat satisfy
the following size criteria for eyes. Sinceour dashboard
camerds ata x eddistancerom the face,we estimatethe
relative sizeof eyesto bebetweerll5and800pixels. For all
imageswe tested(seeral hundred) we found thesecriteria
to bereliable. Fig 6 shavs resultsof automaticeye andlip
initialization from variousdatasets.

2.2 Lip Tracking

We have a multi-stagelip tracker. The rst stageis the
mostaccuratebut unstable.The secondstageis not asac-
curatebut more stable. The third stageis coarsebut very
stable.We usethe rst stageestimatejf it is correct.If not



Figure 6. automatic eye and lip initialization

we take the secondstageestimate.If both stagedail, we
take thethird stageestimateasthelip corners.

Forthe rst stageweautomaticallynd thedarkline be-
tweenthelips, shavn in Fig 7 asawhite line. We compute
thisdarkline asfollows. We nd the centerof thelips from
andfor eachside
of the mouthwe startexaminingeachpixel outward from
thelip center For eachpixel, we considera vertical line
and nd the darkest pixel, , on this vertical
line. Thedarkestpixel will generallybea pixel onthedark
line betweerthelips. We do this for 35 subsequenpixels,
which is why the mouthline extendsbeyond the sidesof
the mouth. To determinewherethelip cornersarewe ob-
tain for
eachpixel; this is becausave wanta pixel thatis closeto
the previouslip corner but if it is too bright, thenit cannot
bethelip corner The functionmaximumis thelip corner
If this estimateis too far from the previouslip corner we
runthesecondstageof our algorithm,describecdext.

Figure 7. Examples of dark line between lips

Herewe usea strictercolor constraint.With the darkest
line found, we selectthe pixel closestto the previous lip
cornerthathaslip coloredpixelsabose andbelow it.

If the secondstagefails thenwe employ the third stage,
whichis simply reinitializationof the systemasdescribed
above in section2.1.1, within the mostrecentlip region.
In this way we have a methodautomaticallyableto correct
itself whenthe trackingis lost dueto occlusion. In sub-
sequenframesthe previouslip trackingstepswill resume
controlandregainthe exactpositionof thelip corners.

Thereasorfor ourhierarchicalip trackeris thatlargero-
tation,occlusion,or rapidly changindighting breaksdown
the accurate( rst)stage. The two other stagesare more
coarsebut they are morerobust. Fig 8 shavs the output
of thelip tracker for avarietyof images.

Figure 8. lip tracker for a variety of sequences

2.3 EyeTracking

We have a multi-stageeye tracker with similar con-
straintsto the multi-stagelip tracker. For the rst stage,
we go to the eye centerin the previousframeand nd the
centerof massof the eye region pixels. Thenwe searcha

window aroundthe centerof massandlook for the
darkestpixel, which correspondso the pupil. If this esti-
mateproducesa new eye centercloseto the previous eye
centerthenwe take this measurement.

If this stagefails, we run the secondstage,wherewe
searclawindow aroundtheeyesandanalyzethelik elihood
of eachnon-skinconnectedegion beingan eye. We limit
thesearctspacdoa window arounctheeye. We nd
theslantof theline betweerthelip corners.Theeyecenters
we selectarethe centroidghathave the closesslantto that
of thelip corners. Still, this methodby itself canget lost
afterocclusion. For simplicity in our descriptionwe refer
to thesetwo stagegogetherastheeye blackholetracler.

Thethird stage which we call theaf ne tracker, runsin
parallelwith the rst two stagesSinceautomatidnitializa-
tion yields the eye centerswe constructwindows around
them, and thenin subsequenframes, considera second
window centeredaroundthe samepoint. We computethe
af ne transformatiobetweerthewindowedsubimagesand
then,sincewe know the eye centerin the previous frame,
we warpthe subimageof the currentframeto nd thenew
eye center Thus,we have two estimategor theeye centers,
onefrom theeye blackholetracker andonefrom theaf ne
tracker. Whenthereis rotationor occlusionor whentheeye
blackholetracker producesan estimatehatis too far avay
from thepreviousframe,we usetheaf ne trackersolely In
all othercaseawve take anaverageof thetwo trackersto be
theeye center Later, we discusshow we detectrotation.



We useAnandansalgorithmto computeheaf ne trans-
formation. It is lesslikely to breakdown during heary
occlusion. The af ne tracker is not asaccurateasthe eye
blackholetracler, becaus®f theinterpolationin warping,
whichis why we don't useit exclusively unlessasalastre-
sort. Figs9 and10 shav someresultsof theeye andmouth
trackerin variousimagesfrom thedatasets.

Figure 9. whole head tracker

Sometimesafter occlusion,the eye tracker mis-tracks.
To compensatewhenerer the distancebetweenthe eyes
getsto morethan-M (whereM is horizontalimagesize),
we reinitialize the eyes. This criteriawasadoptedecause
we know boththelocationof the cameran the carandthe
approximatesizeof the head.We alsoreinitializethe eyes
whenthethelips reappeaaftercompleteocclusion,which
wedeterminavhenthenumberof lip pixelsin thelip region
dropsbelon ve pixelsandcomeshack. Thereasoningoe-
ing thatif thelips arefully occludedthenthe eyeswill not
bevisible,sowhenthey reappeawe shouldreinitialize.

This eye tracker is very robust; it tracks successfully
throughocclusionandblinking in ourexperimentsFurther
it is not affectedby a moving backgroundandit hasbeen
veri ed to trackcontinuouslyon sequencesf 400frames.

2.4. Bounding Box of Face
We can determineface rotation if we have the faces

boundingbox. To nd this box, we startat the centerof
theheadregion,whichis computedisingtheaverageof the

Figure 10. head tracker with eye occlusion

eye centersandlip corners We cando this becaus¢hecen-
ter of the headis approximatelylocatedin betweenthese
four featurepoints. We could have found a moreaccurate
centroidof the head,but only a rough estimateis needed
here. Thenfor eachsideof theface,we startour searchat
a constandistancerom the centerof faceandlook inward
nding the rst consecutie ve pixelsthatareall skin. Us-
ing ve pixels,protectsus from selectingthe rst spurious
skin pixel. This approactgivesanacceptabléacecontour
We shawv eachsideof the faceasa straightline, produced
from anaverageof all thepositionsfor that(curved)sideof
thefacein Fig 11, alongwith thetracked eyesandmouth.

Figure 11. face trace with head tracker



2.5. Occlusion,Rotation, and Blinking

Oftenthedriver blinks or rotatesthe head,so occlusion
of theeyesor lips occurswhichwe needto detect.To clar
ify: ourtrackeris ableto trackthroughmostocclusion but
it doesnotrecognizehatocclusion(from rotationor blink-
ing) occurred For driveralertnessye needo developalgo-
rithmsto modelocclusionsothatwe canidentify theseac-
tivities. Our occlusionmodeldealswith rotationandblink-
ing, importantfactorsfor driver alertness.

Becauseof foreshorteningwhen rotation occurs, de-
pendingon which directionrotationis occuringin, the dis-
tancebetweenthe featurepointsand sidesof facewill in-
creaseor decreaseSo,in eachframewe computethe dis-
tancefrom the sidesandtop of the faceto the eye centers.
We also computethe distancefrom the side of facefrom
themouthcorners We take thederivative of thesemeasure-
mentsover time and whenthereis consistentdecreaser
increasdn the distance this indicatesrotation. Formally,
whenmorethanhalf of thedistance®f a particularfeature
pointindicaterotationin the samedirection, thenthis fea-
turepointis assumedo beinvolvedin headrotation.Fig 11
shavs how the distancebetweerthe facesidesandeye and
mouthfeaturepointsincreaseanddecreaseéuringrotation.

Next, a voting systemis constructedvhereeachfeature
point predictsthe directionof rotation. Whenhalf or more
of the featurepointsdetectrotation,thenwe declarerota-
tion in this particulardirection. Eachfeaturepoint canbe
involvedin rotation along combinationsof directions,but
somecasesare mutually exclusive(e.g. simultaneoudeft
andright rotation). We have veri ed that the systemcan
detectrotationalongcombineddirections(e.g.up andleft).
By consideringhedistancefrom the sidesandtop of head
we candiscriminaterotationfrom translatiorof the head.

Fig 12shawvstheoutputof thewholeheadrackerinclud-
ing rotationanalysismessagesutomaticallydisplayedoy
the system.Next, we presenta methodto determinewhen
blinking occurs.

We have two methodsto eye occlusiondetection. The
rst methodcomputeghelik elihoodof rotationalocclusion
of theeyes. To determineocclusionof the eyeswe look for
the numberof skin pixelsin the eye region, andwhenthis
increaseso morethan - , whereS is the size of the eye
region,thenwe assumeotationalocclusionis occuring.We
know the size of the eye region becauseave have the non-
skin region from the skin color predicate. The reasorwhy
we do not just announceotationalocclusionwhenrotation
occursis that rotationis not a sufcient conditionto infer
eye occlusion.During smallrotation,botheyeswill still be
visible. Our methodworkswell in rotationalocclusionof
theeyes.

Thenext methodcomputeghelik elihoodof theeyesbe-
ing closed(blinking). This methodreliesonthesimplefact

Figure 12. head tracker rotation messages

thatthe eyescontaineye whites. In eachframeaslong as
thereareeye-whitepixelsin theeye regionthenwe assume
thatthe eyesareopen. If not, thenwe assumeblinking in
theparticulareye is occuring.To determinevhatis consid-
eredeye-whitecolor, in the rst frameof eachsequenceve

nd the brightestpixel in the eye region. This allows the

blink methodto adaptto variouslighting conditions.

For the above eye occlusiondetection,eacheye is in-
dependenbf the other Now we are able to distinguish
betweenrotational occlusionof eyes and the eyes clos-
ing(blinking). Thesemethodsgive very goodresults. Fig
14 showvs someof the resultsfrom blink detectionfor both
shortblinksandlong eye closures.



2.6. Reconstructing3D GazeDir ection

The problemof 3D reconstructions a dif cult one. Al-
ready we have determinedrotation information and now
we provide a solutionto 3D gazetrackingproblemwith a
singlecamera. The reasorwe cando this is thatwe only
needthe directionof the gaze. For all practicalpurposes,
the gazecould go on throughthe windshield. By making
thisassumptionve eliminatethe needto know the distance
from the headto the camera.Also, if we assumehathead
sizeis relatively constanbetweerpeoplethenwe have all
the informationwe need. Sincewe only want the direc-
tion of gaze we needthe x,y locationsof theeyesandback
of head. With this information, we can constructthe line
which passeghroughall the z coordinates.We know the
eyelocationssoif wecan nd thebackof theheadthenwe
canreconstructhegaze We have foundthroughourexper
imentationthatwhenrotationoccurs,the backof the head
canbe approximatedvell by the averageof the two eyes
subtractedrom its distancefrom the centerof the headin
the rst frame. This assumptioris valid becausevhenro-
tationoccursthe averagepositionof thetwo eyesmovesin
the oppositedirectionto the backof the head. Whenhead
translatioroccurswe addthetranslatiorof the averagepo-
sitionof theeyesto theoriginalbackof thehead.Thisgives
us the relative location of the back of the head(relatie to
the rst frame). Sincewe have thex,y locationof the eyes
andthe back of the head,we candraw linesin xyz space
shaving thedirectionof thegaze.This methodallows usto
derivethegazedirection.

Fig 13 shavs someresultsfrom acquiring3D gazein-
formation.The rst two picturesaretheinputpictures.The
next two gures arethe graphical3D representationf the
scendrom they,z plane(with the x axiscomingout of the
page).Thelowest gure wasjust oneof the picturesfrom
the sequencavhich shavs that the headmovesup in this
picturewith norotation. Thisis animportantcomponenbf
the systembecauseow it is possibleto generatestatistics
of wherethedriver'sgazeis.

Thesystenis notfoolproof. Givenalow-lighting picture
the methodof headtrackingwould breakdown. However,
we have testedour programon twelve sequencesanging
from 30-400frames,andthe systemappeardo bevery ro-
bustandstable.

3. Driver Alertness

In this sectionwe proposeideasabouthow to useour
systemto acquirethedriver's state.

Whenthe driver is looking away for too long, thenwe
warnthatthe driver's alertnesss too low. Similarly, when
thedriver's eyesareoccluded(eitherfrom blinking or rota-
tion occlusion) for toolong we warnthatthedriver's alert-

Figure 13. Acquiring 3D info

nessis too low. More of a rigorousanalysison the physi-
ology of sleepbehaiors is necessarpeforeaccuratelyde-
terminingwhena driver hasfallen asleep.For our system
however, we areableto determinea basicsetof criteriato
determindrivervigilance.We cando thefollowing. Since
we know whenthe driver's eyesare closedwe assumehe
driver hasa low vigilancelevel if the eyesare closedfor
morethan40/60frames.In eachframewe alwaysknow the
numberof lip pixelsin theimage.Sowe canthresholdhis
number andwheneer therearetoo few lip pixelswe will
assumehatthe headis heaily rotated. We canthenprint
thatthedriver's vigilancelevel is too low. However, since
it is naturalfor a driver to look left andright we will only
print adriverinalertnessnessagé theheavy lip occlusion
occursfor morethan10/20frames. Finally for generalro-
tation that doesnot completelyoccludethe eyes, we will
not give driver inalertnessvarningsunlessthe rotationis
prolonged.

Again, it is notourintentionto delveinto thephysiology
of driver alertnesst this time. We aremerelydemonstrat-
ing thatwith our framework, it is possibleto collectdriver
informationandbegin to make inferencesasto whetherthe
driveris alertor not.

4. Summary and Futur e Dir ections

We presenteda methodto track the head,using color
predicateso nd thelips, eyes,andsidesof theface.It was



testedundervaryingdaylightconditionswith goodsuccess.
We computeeye blinking, occlusioninformation,androta-
tion informationto determinghedriver's alertnesgevel.

Therearemary futuredirectionsfor driveralertnessFor
aircraftsandtrains,the systemcould monitorheadmotions
in generalndtrackvehicleoperatoralertness.

As we canrecognizeall gazedirections,we could de-
velop a larger vocahulary and classify checkingleft/right
blind spotsooking at rearview mirror, checkingsidemir-
rors,looking attheradio/speedometeontrols,andlooking
ahead.Also we couldrecognizeyawning. Otherimprove-
mentscouldbecopingwith handsoccludingtheface drink-
ing coffee,corversationpr eye weatr
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Figure 14. Blink detection with head tracker



