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Abstract

In this paper, we describe how camera parameters and
light source orientation can be recovered from two per-
spective views of a scene given only two vertical lines and
their cast shadows. Compared to the traditional calibration
methods that involve images of some precisely machined
calibration pattern, our method uses new calibration ob-
jects: the vertical objects and their parallel shadow lines,
which are common in natural environments. In addition to
the benefit of increasing accessibility of the calibration ob-
jects, the proposed method is also especially useful in cases
where only limited information is available. To demonstrate
the accuracy and the applications of the proposed algo-
rithm, we present results on both synthetic and real images.

1 Introduction

There has been much work on camera calibration, both in
photogrammetry and computer vision. Traditional methods
(e.g. [6, 10, 13]) typically use a special calibration object
with a fixed 3D geometry, and give very accurate results.
In some applications, however, it might not be possible to
extract camera information off-line by using calibration ob-
jects due to the inaccessibility of the camera. Although the
recent auto-calibration techniques [7] that aim to compute
a metric reconstruction from multiple uncalibrated images
avoid the onerous task of calibrating cameras using spe-
cial calibration objects, they mostly require more than three
views and also involve the solution of non-linear problems.

The proposed technique, which uses only two views of
a scene containing two vertical objects and their cast shad-
ows, is based on exploiting the priors of a normal camera
such that the skew is close to zero and aspect ratio is almost
unity as argued in [7]. Instead of assuming them as known
in works such as [8, 1], however, we show it is possible to
determine them without further assumptions by minimizing
the symmetric transfer errors and epipolar distances. Before
that, we describe how to express the planar homographies
and the fundamental matrix as functions of two components

of the Image of Absolute Conic. This proposed method is,
therefore, especially useful for cases where only limited in-
formation is available.

Another more important advantage of the proposed
method is its simplicity and the wide accessibility of the the
calibration objects - some vertical objects (e.g. walls, stand-
ing people, desks, street lamps, etc.) and their parallel cast
shadows illuminated by infinite light source (e.g. sunlit).
We admit some recent efforts using architectural buildings
[8], surfaces of revolution [11, 4] and circles [3] are toward
the similar goal. However, we believe that the alternative
vertical objects and their cast shadows are more common in
the real world, especially in out-door environments.

Considering also that the appearance of an object greatly
depends not only upon the pose of the object but also upon
the illumination conditions, the recovery of light source in-
formation, similar to the camera calibration, is also crucial
in computer vision as well as in computer graphics, espe-
cially due to the recent interest in Image-Based Rendering
(IBR) techniques. In this work, therefore, we focus on a
typical outdoor scene with several vertical objects lit by a
distant sunlight, although this proposed method is not that
restricted. For example, our method also works for the case
with two vertical objects and a finite vanishing point along
a direction orthogonal to the vertical one. We show two
views of such scenes are enough to calibrate the camera
and recover the orientation of the light source. Since the
developed technique requires no knowledge of the 3D coor-
dinates of the feature points of the vertical objects, it is well-
suited for IBR applications. Two examples will be used to
show how to make use of the camera and light source infor-
mation, and demonstrate the strength and applicability of
this methodology.

2 Preliminaries

2.1 Pin-hole Camera Model

A pin-hole camera, based on the principle of collinearity,
projects a region of R

3 lying in front of the camera into
a region of the image plane R

2. As is well known, a 3D
point M = [X Y Z 1]T and its corresponding projection



Figure 1. Basic geometry of a scene with two
vertical lines t1b1 and t2b2 casting shadows
s1b1 and s2b2 on the ground plane π by the
distant light source v.

m = [u v 1]T in the image plane is related via a 3 × 4
matrix P as

m ∼ K[r1 r2 r3 t]︸ ︷︷ ︸
P

M, K =


 f γ u0

0 λf v0

0 0 1


 , (1)

where ∼ indicates equality up to multiplication by a non-
zero scale factor, the r1, r2, r3 are the columns of the 3 × 3
rotation matrix R, t = −RC, with C = [Cx Cy Cz]T being
the relative translation between the world origin and camera
center, is the translation vector, and K is the 3 × 3 camera
intrinsic matrix including five parameters: focal length f ,
skew γ, aspect ratio λ and principal point at (u0, v0).

2.2 Scene Configuration

We first examine the scenes containing two vertical lines
and their cast shadows on the ground plane. The basic ge-
ometry is shown in Fig. 1. Note that this figure shows the
projections of the world points in the image planes denoted
by corresponding lower-case characters. For example, the
world point B2 (not shown in Fig. 1) is mapped to b2 in
the image plane. Without loss of generality, we choose the
world coordinate frame as follows: origin at B2, X-axis
along the line B2T2 with the positive direction towards T2,
Y-axis along the line B1B2 with the negative direction to-
wards B1, and the Z-axis given by the right-hand rule.

2.3 Constraints from A Single View

In the following, we explore the constraints available
from a single view, given the above configuration. Based
on the world coordinate frame described above, we can

compute the vanishing point vx along the x-axis (i.e. verti-
cal) direction by intersecting the two vertical lines t1b1 and
t2b2. Since the light source, v, is at infinity or distant, the
two shadow lines S2B2 and S1B1 must be parallel in the
3D world. In other words, the two imaged parallel shadow
lines, s1b1 and s2b2, will intersect in the image space at the
vanishing point v′.

From the pole-polar relationship with respect to the Im-
age of the Absolute Conic ω – an imaginary point conic
directly related to the camera internal matrix K in (1) as
ω = K−T K−1[7]: the vanishing point vx of the normal
direction to a plane (ground plane π in our case) is the pole
to the polar which is the vanishing line lyz of the plane,

vy × v′ = lyz = ωvx, (2)

where vy is the vanishing point along the y-axis. Equation
(2) can be rewritten, equivalently, as two constraints on ω:

v′T ωvx = 0, (3)

vT
y ωvx = 0. (4)

In our case, we only have the constraint (3) since we can
not determine vy yet. Without further assumptions, we are
unlikely to extract more constraints on K from a single view
of such a scene shown in Fig. 1.

Before we move to our method, we do want to mention
some possible configurations that may provide more con-
straints, although we will not make use of such constraints.
One possibility is to assume that the two vertical lines t1b1

and t2b2 have the same lengths, in which case vy can be
directly computed as vy = (t1 × t2)× (b1 × b2). Other pos-
sibilities include utilizing the knowledge of the orientation
of the light source v, or making use of the ratios of lengthes
such as t1b1/t2b2 and t1b1/b1b2. However, too many as-
sumptions limit the applicabilities in the real world.

3 Our Method

Our proposed method aims to solve the relatively more
general problem using two views without any further as-
sumptions. The basic idea of our method is to define two
camera matrices P and P ′ corresponding to the two views
as functions of ω12 and ω22, two elements of the ω. The rea-
son we choose ω12 and ω22 as variables will be explained
in section 3.2. As a result, we can compute ω12 and ω22 by
minimizing the symmetric transfer errors of the geometric
distances and the epipolar distances. Therefore, both cam-
era intrinsic and external parameters can be recovered since
P and P ′ depend only on ω12 and ω22.

3.1 Extra Constraints from the Second View

The second view can be easily used to get the second
constraint from equation (3). Beyond that, we explore



here the third constraint based on the invariance property
of cross-ratio under projective transformation.

Geometrically, equation (4) can be interpreted as vy lies
on the line ωvx. Considering also that vy lies on the imaged
y-axis b1b2, we can express vy as a function of ω:

vy = [b1 × b2]×ωvx, (5)

where [·]× is the notation for the skew symmetric matrix
characterizing the cross product. As shown in Fig. 1, the
four points a, b1, b2, and vy , are collinear, and their cross-
ratio is preserved under the perspective projection. Thus we
have the following equality between two given images

{vy, b2; b1, a}1 = {vy, b2; b1, a}2, (6)

where {·, ·; ·, ·}i denotes the cross ratio of four points, and
the superscripts indicate the images in which the cross ra-
tios are taken. This gives us the third constraint on ω =
K−T K−1, which can be expanded up to a scale as:

ω ∼




1 − γ
fλ

γv0−λfu0
fλ

∗ f2+γ2

f2λ2 −γ2v0−γλfu0+v0f2

f2λ2

∗ ∗ v2
0(f2+γ2)−2γv0λfu0

f2λ2 +f2+u2
0


 , (7)

where the lower triangular elements are denoted by ∗ to save
the space since ω is symmetric. Therefore, we can define ω
by a 6D vector with five unknowns as:

w ∼ [1, ω12, ω22, ω13, ω23, ω33]T , (8)

where ωij denotes the element in ith row and jth column of
ω in (7). If we assume a simplified camera model with zero
skew and unit aspect ratio, theoretically, these three known
constraints are sufficient to solve for the three unknowns:
focal length f , principal point coordinates u0 and v0.

3.2 Defining P & P ′ as functions of ω12 & ω22

In practice, however, it may be more interesting to fully
calibrate the camera. Instead of treating some internal pa-
rameters (for example γ and λ) as known or constant, we
first define both the camera internal parameters and exter-
nal parameters as functions of ω12 and ω22. The reason we
choose ω12 and ω22 as variables is that they embrace the ex-
perimental knowledge of a camera model. In other words,
ω12 is scaled γ by 1/f and thus very close to zero, while
ω22 is close to 1/λ2 ≈ 1. As a result, we can compute ω12

and ω22 by enforcing inter-image planar homography and
epipolar geometric constraints as explained later.

Since there are three constraints (two from equation (3)
and one from equation (6)) on ω, we can compute ω13, ω23

and ω33 as functions of ω12 and ω22. Without difficulty, we

then uniquely extract the intrinsic parameters from ω,

λ =
√

1/(ω22 − ω2
12), (9)

v0 = (ω12ω13 − ω23)/(ω22 − ω2
12), (10)

u0 = −(v0ω12 + ω13), (11)

f =
√

ω33 − ω2
13 − v0(ω12ω13 − ω23), (12)

γ = −fλω12. (13)

After expressing the camera internal parameters, we can
compute camera external parameters as follows. As is
known [6, 5], the first column p1 of the projection matrix
P in equation (1) is the scaled vx, and the the second col-
umn p2 ∼ vy . For example, vx is the projection in the image
plane of the infinite 3D point X∞ = [1 0 0 0]T ,

vx ∼ [p1 p2 p3 p4][1 0 0 0]T = p1. (14)

By expanding equation (1), We have

p1 =
[
KT

1 r1 λfr21+v0r31 r31

]T
,

p2 =
[
KT

1 r2 λfr22+v0r32 r32

]T
, (15)

where K1 is the first row of camera internal matrix K, and
rk are the columns and rij are the components of the rota-
tion matrix R = RzRyRx.

After simple algebraic derivations, three rotation angles
can be expressed as functions of camera intrinsic parame-
ters as

θz = tan−1 f(vxy − v0)
λf(vxx − u0) − γ(vxy − v0)

, (16)

θy = tan−1 λf sin(θz)
v0 − vxy

, (17)

θx = tan−1 λf cos(θz)/ cos(θy)
vyy − v0 − λf tan(θy) sin(θz)

, (18)

where (vxx vxy) are the coordinates of vx, and (vyx vyy) are
the coordinates of vy. Similar to the work in [1], translation
vectors t can also be computed up to a scale.

3.3 Solving for Camera Calibration

Now we have expressed all the camera parameters, and
hence camera matrices P and P ′, as functions of ω12 and
ω22. Therefore, we can compute ω12 and ω22 by enforcing
both the strong and weak inter-image constraints that mini-
mize the symmetric transfer errors of geometric distances.

The strong constraints are typically planar homographies
that have a one to one mapping, and the weak one is often
the epipolar constraint. Obviously, we have two dominant
planes π and π1 as shown in Fig. 1. The two inter-frame



planar homographies Hπ and Hπ1 corresponding to π and
π1 can be computed as

Hπ = [p′2 p′3 p′4][p2 p3 p4]−1, (19)

Hπ1 = [p′1 p′2 p′4][p1 p2 p4]−1, (20)

where p′i and pi denote the ith columns of P ′ and P respec-
tively. For the corresponding points that do not lie on either
plane π or π1, we enforce the weak epipolar constraints on
them. The epipolar constraint is encapsulated in the alge-
braic representation by the fundamental matrix F that can
be computed as

F = [e′]×P ′P+, (21)

where P+ is the pseudo-inverse of P , i.e. PP+ = I, and
the epipole e′ = P ′C where C is the null-vector of P ′,
namely the camera center, defined by PC = 0.

Finally, we can determine the two variables ω12 and ω22

by enforcing the above constraints, i.e. minimizing the fol-
lowing symmetric transfer errors of the geometric distances
and epipolar distances

λ1

Nπ∑
i=1

(d1(xi,H
−1
π x′

i)
2 + d1(x′

i,Hπxi)
2) +

λ2

Nπ1∑
j=1

(d1(xj ,H
−1
π1

x′
j))

2 + d1(x′
j ,Hπ1xj)

2) +

λ3

Ng∑
k=1

(d2(x′
k, Fxk))2 + d2(xk, F−1x′

k)
2
). (22)

where d1(·, ·) is the Euclidean distance between two points,
d2(·, ·) is the Euclidean distance from a point to a line, λi

are the weights, and N∗ are the numbers of matching points
coincide with different constraints. The initial estimates for
ω12 and ω12 are zero and one respectively.

3.4 Light Source Orientation Estimation

After calibrating these cameras, we have no difficulty in
estimating the light source position and orientation by us-
ing the triangulation method [7]. Since in our case the light
source is far away, however, we only need to measure az-
imuthal angle θ in the Y Z plane with the Y-axis and the
polar angle φ with the X-axis as shown in Fig. 1.

φ=cos−1 vT
x ωv√

vTωv
√

vT
xωvx

, θ=cos−1
vT

y ωv′
√

v′Tωv′
√

vT
yωvy

. (23)

4 Experimental Results

The proposed method aims to directly calibrate cameras
for applications where it is difficult to calibrate cameras be-

View camera position “at” position

1st (40 -10 100+randnom(1)) (0 100 0)

2nd (40 150 100+randnom(1)) (0 100 0)

3rd (100 -10 100+randnom(1)) (0 100 0)

4th (100 150 100+randnom(1)) (0 100 0)

Table 1. Parameters for four viewpoints.
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Figure 2. Performance vs. noise (in pixels)
averaged over 1000 independent trials.

forehand using special calibration pattern with known ge-
ometry and where not enough numbers of views are avail-
able to employ self-calibration methods. In our experi-
ments, therefore, we focus on the cases with minimal infor-
mation. The minimal information is nothing but six points
in two views as described in section 2.2.

4.1 Computer Simulation

The simulated camera has a focal length of f = 1000, as-
pect ratio of λ = 1.06, skew of γ = 0.06, and the principal
point at u0 = 8 and v0 = 6. The two vertical objects have
lengths 100 and 80 pixels respectively, and the distance be-
tween the two vertical objects is 75 pixels. The polar angle
φ = arctan 0.5 and the azimuthal angle θ = 60◦. In the ex-
periments presented herein, we generated four views with
camera and “at” positions listed in Table 1. Note that we
follow camera coordinate specification in OpenGL fashion.
Therefore, at − camera is the principal view direction.

We used the two combinations of image pairs (views)
in Table 1. The first combination composes of 1st and 4th



Figure 3. Three images of a standing person
and a lamp. The circle marks in the images
are the minimal data. The square marks are
the corresponding points, computed by us-
ing method [12], between the last two images,
which are used to compute the epipolar dis-
tances in equation (22).

views, while the second one includes 2nd and 3rd views.
Gaussian noise with zero mean and a standard deviation
of σ ≤ 1.5 was added to the projected image points. The
estimated camera parameters were then compared with the
ground truth. As argued by [9, 14], the relative difference
with respect to the focal length rather than the absolute er-
ror is a geometrically meaningful error measure. Therefore,
we measured the relative error of f , u0 and v0 with respect
to the f while varying the noise level from 0.1 pixels to
1.5 pixels. For each noise level, we perform 1000 indepen-
dent trials, and the results shown in Fig. 2 are the aver-
age. For the aspect ratio λ, we measure the relative error
w.r.t. itself. As pointed out in [7], γ will be zero for most
normal cameras and can take non-zero values only in cer-
tain unusual instances (i.e. taking an image of an image).
Without surprise, we found in our experiment that the ex-
perimental results are very insensitive to the variable ω12

since ω12 = −γ/(fλ) ≈ 0 in most cases and equals to
−5.6604e − 5 in our case. In other words, small amount
of noise will overcome the valid information to extract the
skew parameter γ and the result of γ is not very meaningful.
Results of other four camera internal parameters are shown
in Fig. 2. Errors increase almost linearly with respect to
the noise level. When we add more noise, the relative errors
of focal lengths keep increasing until it reaches 1.95% for
the first combination and 2.72% for the second one when
σ = 1.5. The maximum relative error of aspect ratio is
5.51% for the first combination, 1.47% for the second com-
bination. The maximum relative errors of principal points
are around 4.02% for u0 and about 4.51% for v0.

4.2 Real Data

We also applied our method on real images. The first
image set consisted of three views of a standing person and
a lamp, which provided two vertical lines for camera cali-
bration (see Fig. 3). For each pair of images, we applied
our algorithm independently, and the results are shown in

Error Image Pair
(1,2) (1,3) (2,3) [8]

f 3203.1 3179.8 3208.0 3155.3
relative error 1.51% 0.78% 1.67%

λf 3208.3 3185.0 3213.2 3312.5
relative error -3.15% -3.85% -2.99%

u0 1176.3 1299.0 1170.5 1163.6
relative error 0.40% 4.29% 0.22%

v0 896.1 900.9 902.2 913.8
relative error -0.56% -0.41% -0.37%

γ -0.67 -0.66 -0.55 -0.62

Table 2. Results for the first real image set.

Table 2. In order to evaluate our results, we obtain a least-
squares (non-natural camera) solution for internal param-
eters from over-determined noisy measurements, i.e. five
images with three mutually orthogonal vanishing points per
view, using the constraints described in [8]. We compared
our results to those listed in the last column in Table 2. The
largest relative error of the focal length, in our case, is less
than 4%. The maximum relative error of principal point
is around 4.3%. In addition, the computed polar angle φ
and azimuthal angle θ are 44.45 and 33.17 degrees respec-
tively, while they are 45.09 and 32.97 degrees by using the
camera intrinsic parameters in the last column of Table 2.
The errors could be attributed to several sources. Besides
noise, non-linear distortion and imprecision of the extracted
features, one source is the casual experimental setup using
minimal information, which is deliberately targeted for a
wide spectrum of applications. Despite all these factors,
our experimentations indicate that the proposed algorithm
provides good results.

Application to image-based rendering: To demon-
strate the strength and applicability of the proposed algo-
rithm, we show two examples for augmented reality by
making use of the camera and light source orientation in-
formation computed by our method. Given two views as
shown in Fig. 4 (a) and (b), the computed camera internal
matrix is

K =


 2641.08 0.03 991.85

0 2783.95 642.30
0 0 1


 ,

and the computed polar angle φ and azimuthal angle θ are
48.32 and 54.91 degrees respectively. As a result, we can
render a virtual teapot with known 3D model into the real
scene (b) shown in (c), the color characteristic is estimated
using methods presented in [2]. Alternatively, we can also
follow the method presented in [2] to composite the stand-
ing person extracted from (d) into (b) and synthesize its
shadow using the contour of the person in (e). Note that



(a)

(b) (c)

(d)

(e) (f)

Figure 4. Image-based rendering Applications. Starting from two views (a) and (b), we first calibrate
the camera and compute the light source orientation. Then, we can render a virtual teapot with
known 3D model into (b) shown in (c). Utilizing this computed geometric information, we can also
insert another person (d) into (b) as shown in (f).

(e) is the image taken along the lighting direction, not nec-
essarily the view from the light source.

5 Conclusion and Future Work

The proposed calibration technique uses images of ver-
tical objects and their parallel cast shadows which are fre-
quently found in natural environment. The fact that prior
knowledge of the 3D coordinates of the vertical objects is
not required, makes the method a versatile tool that can be
used without requiring a precisely machined calibration rig
(e.g. grids), and also makes calibration possible when the
object is not accessible for measurements, in other words,
when the images are taken by other people. Moreover,
our method alleviates the limitation of a simplified camera
model for cases where only limited information is available.
This is achieved by enforcing inter-image homography and
epipolar geometric constraints, and exploiting the property
of a normal camera that the skew is close to zero and aspect
ratio is almost unity. Experimental results show that the
method provides very promising solutions even with mini-
mum requirements of two images and six correspondences.
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