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Abstract

We propose a method for recovering the af�ne geome-
try of a dynamically textured plane from a video sequence
taken by an uncalibrated, �xed, perspective camera. Some
instances of approximately planar surfaces that are coated
with a dynamic texture include large water bodies, (such as
lakes and oceans), heavy traf�c, dense crowds, escalators,
and foliage in the wind. Under the assumption of trans-
lational dynamic textures, we propose a direct algorithm
for the estimation of the inter-frame elation that does not
require explicit identi�cation of texels or movetons. In ad-
dition, we develop a general algorithm for recovering the
af�ne geometry of homogeneous dynamic textures by iden-
tifying a constraint on the expected values of motion magni-
tudes. We report experimental results on several real videos
of dynamic texture found in the world.

1. Introduction

Inferring the shape of surfaces and objects from visual
cues such as motion, contours, shading and texture has
a rich tradition in computer vision literature. While tex-
ture and motion have each been examined individually as
sources of information for shape, their composite - dynamic
texture - has not been investigated for recovery of shape
information. In this paper we demonstrate that for pla-
nar scenes, the dynamic texture of a surface can be ex-
ploited to recover its af�ne geometry. Planes coated with
dynamic textures often arise in the world, in seascapes (such
as beaches, ports, lake-sides), dense crowds, highway traf-
�c, foliage in the wind, escalators, and so on. Since par-
allelism, ratio of areas, ratios of lengths on collinear lines
and linear combinations of vectors (such as centroids) are
all preserved under af�ne transformations ([11]), recovering
the af�ne geometry has useful application in surveillance,
particularly for seaports and highways.

Inquiry into the use of texture as a cue for shape recovery

began with J. J. Gibson's seminal book in 1950, [10]. Shape
from texture approaches have traditionally assumed some
structure on the textured surface, such as regularity, peri-
odicity, parallelism, homogeneity or isotropy. Different ap-
proaches make one or more of these assumptions. Isotropy,
for instance, was used by Witkin ([22]) and Brown ([4]),
homogeneity by Kanatani and Chou in [13] and Criminisi
and Zisserman in [6] and periodicity by Ribeiro and Han-
cock in [18]. An experimental evaluation of homogeneity
and isotropy has been reported by Rosenholtz and Malik
in [19]. Homogeneity, in particular, assumes that the tex-
ture statistics do not depend on the position of a pixel, only
on its neighborhood - a formal de�nition has been provided
by Kanatani and Chou in [13]. Criminisi and Zisserman
showed in [6] that by making an assumption of homogene-
ity recti�cation up to an af�ne transformation can be recov-
ered. Other approaches to determining the vanishing line
(such as [16], [14] and [3]) involve identifying moving ele-
ments and/or tracking them across the plane explicitly. Dy-
namic or temporal textures were �rst investigated by Nelson
and Polana in [17]. Several statistical models of dynamic
textures have since been proposed in literature, such as the
the spatio-temporal autoregressive (STAR) model of Szum-
mer and Picard, [20], the multi-resolution scheme of Bar-
Joseph in [1] and the AR model of Dorettoet al in [7]. Mo-
tion estimation in scenes containing dynamic textures have
also been addressed using stochastic models in [9] and [21].
In our work, we propose the use of dynamic texture for re-
covery of the af�ne geometry of a plane, without the need to
identify texels, movetons or any other basic element of the
dynamic texture. We investigate two models, translational
and homogeneous dynamic textures and develop algorithms
for both. Our experiments on both real and synthetic data
demonstrate accurate estimation on a variety of data.

The rest of the paper is organized as follows. Section
2 introduces our model of a scene and the geometric re-
sult required by this work. Section 3 introduces the prob-
lem in the context of homogeneous dynamic textures and a
special sub-class called translational dynamic textures. We



propose a direct algorithm for estimating the af�ne geom-
etry for the translational case from two frames, as well as
an algorithm for estimation over time for homogeneous dy-
namic textures. In Section 4 we report results of quantita-
tive experimentation on rendered dynamic textures as well
as qualitative demonstration on many real videos. Finally,
we conclude with a discussion of our work in Section 5 and
muse on future directions of research.

2. Scene Model

The scene is modeled as a plane coated with a dynamic
texture which is being viewed by a stationary and uncal-
ibrated perspective camera. Criminisi and Zisserman have
shown in [6] that if the vanishing line can be identi�ed in the
image then the scene plane can be recti�ed up to an af�ne
transform using the following transformation

H ® =

2

4
1 0 0
0 1 0
l1 l2 l3

3

5 ; (1)

wherel = ( l1; l2; l3) | is the vanishing line. Gibson has ob-
served that “the texture gradient of the ground is orthogonal
to the horizon on the retinal image”, and using this obser-
vation, Criminisi and Zisserman proposed an algorithm to
af�ne rectify a plane using texture information. In our pa-
per, we make a statement, analogous to Gibson's, concern-
ing dynamic texture and propose an algorithm that utilizes
the dynamics of the texture to af�ne rectify the scene plane.

2.1. Dynamic Texture Segmentation

We outline a simple approach to segment out dynamic
textures from static sections of an observed scene. Initial
segmentation is through a patch-based mechanism that mea-
sures autocorrelation. Static areas yield high autocorrela-
tion values across time whereas regions containing dynamic
texture yield much lower autocorrelation values. This seg-
mentation is then expanded to include external neighboring
pixels whose color statistics �t the statistics of the internal
pixels. Several more sophisticated methods exist such as
[5], but since we are addressing a simpler case of differen-
tiating dynamic textures from static regions, this approach
usually suf�ces.

3. Recovering the Af�ne Geometry of Dynamic
Textures

In this section we describe two algorithms to recover the
vanishing line from the dynamics of textures. The �rst al-
gorithm can be used when the dynamic texture istransla-
tional, that is when the �ow �eld can be globally approx-
imated as a translation in the real world. The second al-
gorithm deals more generally withhomogeneousdynamic

textures as de�ned by Dorettoet al in [8]. A homogeneous
dynamic texture is any texture whose spatiotemporal statis-
tics are homogeneous - a direct analogue to homogeneous
texture whose spatial statistics are homogeneous.

3.1. Translational Dynamic Textures

For a special class of dynamic textures, where the mo-
tion �eld of the dynamic texture can be globally modeled
to be translational, the vanishing line can be estimateddi-
rectly from image gradients. Examples of dynamic texture
that can reasonably be modeled in this way includes esca-
lators, parades, one-way highway traf�c, and most impor-
tantly videos of seas, oceans and other large bodies of water.
The proposed algorithm requires just two frames for accu-
rate computation, although the parameters can be estimated
over time across many frames.

3.1.1 Direct Estimation of the Vanishing Line

The transformation induced by the image of a translational
�ow �eld along a plane is a conjugate translation and can be
expressed as an elation, [11]. An elation is a transformation
with an axis (a line of �xed points) and a vertex (a pencil
of �xed lines intersecting at that point). All invariant points
under an elation lie on its axis1. Speci�cally, the images
of any two points on a world plane undergoing translation
along the plane,x0; x 2 P2 are related by an elation,H E ,

¸ x0 = H E x (2)

whereH can be parameterized as,

H E = I + ¹ va | ; a| v = 0 (3)

whereI is the identity matrix,a is the axis,v is the dy-
namic texture vertex and¹ is a constant dependant to the
magnitude of motion along the plane. An illustrative exam-
ple of these constructs is given in Figure 3, where the axis
is the horizon and the vertex a point where the motion ap-
pears to be emanating from. Equation 3 can be rewritten in
non-homogeneous form, giving the pair of equations,

x0 =
(1 + ¹v 1a1)x + ( ¹v 1a2)y + ¹v 1

¹a 1x + ¹a 2y + 1 + ¹
(4)

y0 =
(¹v 2a1)x + (1 + ¹v 2a2)y + ¹v 2

¹a 1x + ¹a 2y + 1 + ¹
: (5)

The so-calleddirect paradigm for motion estimation, pro-
posed by Horn and Weldon in [12], advocates the estimation
of motion parameters directly from image gradients. By
making an assumption of brightness constancy over small
motion, the well-known optical �ow constraint equation is

1For further details and for properties of elations see Appendix 7 in [11]



obtained and is often used to estimate the parameters. The
optical �ow constraint is,

I x u + I y v + I t = 0 (6)

whereu = x0 ¡ x; v = y0 ¡ y is the motion �ow. Equation
6 can be rewritten as,

I x (x0 ¡ x) + I y (y0 ¡ y) + I t = 0 (7)

and substituting from Equations 4 and 5 we wish to mini-
mize a function of �ve variables,

min f 1(a1; a2; v1; v2; ¹ ) = 0 ; (8)

but with four degrees of freedom since it is subject to the
constraint

a1v1 + a2v2 + a3v3 = 0 : (9)

Thus, given an initial estimate of the¹ , a and v , non-
linear minimization can be performed using the Levenberg-
Marquardt algorithm to �nd an optimal estimate of the van-
ishing line. Of course, all the conventional strategies that
are employed in direct algorithms, such as hierarchical es-
timation, robust error measures, gradient smoothing, can be
employed during estimation to obtain accurate results. It
should be noted that for videos containing water bodies, in
particular, estimation of the elation using feature based al-
gorithms perform poorly compared to this direct algorithm
since it is dif�cult to locate salient features that do not dis-
tort over time. On the other hand, there is clearly a `global'
transformation, that direct algorithms capture accurately. In
some cases, (such as the escalator sequence of the results)
feature based approaches can be used to estimate the inter-
frame elation. But in general, and for dynamic textures that
display stochastic behavior (such as water bodies) in par-
ticular, direct algorithms are more suited for estimating this
type of motion.

3.1.2 Initialization

An initial estimate is obtained by approximating the elation
as an af�ne transform,H A and computing it using the lin-
ear algorithm proposed by Bergenet al in [2]. By noting
that the vanishing line is that line that does not move un-
der the transformation,H A , i.e. that¸ a = H A

¡ | a, and
recalling the de�nition of eigenvectors, an initial estimate
of a can be obtained from the eigenvector ofH A

¡ | cor-
responding to the eigenvalue at the greatest distance from
unity2. Similarly, an eigenvector ofH A can be used as an
estimate of the vertexv . An initial estimate of¹ can be ob-
tained by performing a line search that minimizes the sum
of squared difference. These estimates can then be used in a

2A related result has been obtained using frequency analysis by Ribeiro
and Hancock in [18].

Objective
Find the af�ne recti�cation matrixH ® given two consecutive im-
agesI s and I t of the plane coated with a translational dynamic
texture.

Algorithm

1. Estimate an af�ne transformationH A betweenI s andI t us-
ing the direct algorithm of [2].

2. Compute the initial estimatêa by taking the eigenvector as-
sociated with the eigenvalue ofH A

¡ | that is at the greatest
distance from unity.

3. Compute the initial estimatêv by taking the only eigenvector
H A that is not a point at in�nity.

4. Compute the initial estimatê¹ by performing a line search
that minimizes the sum of squared difference between the
target and warped source images.

5. Use (â; v̂ ; ¹̂ ) as initial estimates for minimization of the
SSD between source and target image using the Levenberg-
Marquardt algorithm.

6. ComputeH ® from a (using matrix in Equation 1).

Figure 1. Algorithm for translational dynamic textures

nonlinear constrained minimization to estimate the elation
that minimizes the sum of squared difference between the
target image and the source image warped with the elation,

arg min
X

i

(I t ¡ w(I s ja; v ; ¹ ))2: (10)

3.2. Homogeneous Dynamic Texture

For homogeneous dynamic textures in general, the
motion need not necessarily follow any global parametriza-
tion. In [8], Dorettoet al de�ne a homogeneous dynamic
texture as an instance of a weak-sense stationary space-time
processf (x ; t). If a process is weak-sense stationarity,
the �rst moment function¹ (x ; t) is independent ofx and
t and the second moment function° (x; x + g; t; t + h) is
independent ofx andt for anyh andg. Instead, we de�ne
dynamics textures as a strict-sense stationarity process,
that f X 1; X 2; : : : X n g and f X 1+ h ; X 2+ h ; : : : X n + h g
have the same joint distribution for allh andn > 0. For
homogeneous dynamic textures, under the strict stationarity
condition, we have,

Proposition 3.1 The expected value of motion magni-
tude at any location on a homogeneous dynamic texture is
identical.

Proof. For strict-sense stationarity, the joint
distribution p(X 1; X 2; : : : X n ) is the same as
p(X 1+ h ; X 2+ h ; : : : X n + h ) for all integers h and



n > 0. Therefore, for any functiong(¢), the distri-
bution of p(g(X 1; X 2; : : : X n )) will be identical to
p(g(X 1+ h ; X 2+ h ; : : : X n + h )) . Since the brightness
constancy constraint equation is a function only of the
intensities of pixels, i.e. it uses spatial and temporal
gradients and does not use location for computation,
the distribution of �ow and therefore the distribu-
tion of �ow magnitude ½(¢) (a function, in turn, of
�ow) will also be stationary. Therefore, the expected
value of motion magnitudeE[p(½(X 1; X 2; : : : X n ))] =
E [p(½(X 1+ h ; X 2+ h ; : : : X n + h ))] for all integersn > 0
and h. It should be noted that since �ow is estimated
locally, it is suf�cient to require only that the joint distribu-
tion of local neighborhoods remain the same at any location.

Then, analogous to Gibson's statement on texture gra-
dients, we have

Proposition 3.2 In perspective images of a plane with
a homogeneous dynamic texture, the gradient of imaged
motion magnitude is perpendicular to the vanishing line in
the image coordinate.

Proof. From Proposition 3.1, the expected value of
motion magnitude is equal all over the 3D world plane,
and thus when projected onto an image plane it captures
the perspective effects of image projection. Criminisi and
Zisserman provide a geometric proof that the gradient of
any perspective effect is perpendicular to the vanishing line
in [6].

3.2.1 Estimation of the Vanishing Line

We model the motion magnitude at a pixel as a univari-
ate Gaussian distribution, and sequentially estimate the ex-
pected value (mean) of motion magnitudes per pixel over
time, i.e. that the magnitude of motion at a pixel is dis-
tributed· (i; j ) » N (¹ (i; j ); ¾(i; j )) . At the incidence of
each frame, pixel-wise optical �ow is computed and used to
update the current estimates of¹ and¾. To recover the van-
ishing line from the �eld of motion magnitudes, we need to
�t a line to the projections of points onto thex ¡ y plane
(image coordinates) along the motion magnitude gradient
direction. This is equivalent to solving the following linear
system of equations,

Ya = s (11)

where

Y =

2

6
6
6
4

x1 y1 1
x2 y2 1

...
xn yn 1

3

7
7
7
5

; s =

2

6
6
6
4

· (x1; y1)
· (x2; y2)

...
· (xn ; yn )

3

7
7
7
5

(12)

Objective
Find the af�ne recti�cation matrixH ® given a sequence ofk im-
agesf I 1 ; : : : I k g of a plane coated with a homogeneous dynamic
texture.

Algorithm

1. For each frame,

² Estimate the motion magnitude¹· (i; j ) at each pixel
location using an optical �ow algorithm (e.g. Lucas-
Kanade approach, [15]).

² Update motion magnitude mean estimation at each
pixel location,· (i; j ) using a sequential update.

2. Estimate the location of the vanishing linea by solving the
linear system of equations of in 11.

3. ComputeH ® from a (using matrix in Equation 1).

Figure 2. Algorithm for homogeneous dynamic textures

anda 2 P2 is the vanishing line in homogeneous coordi-
nates. An intuitive interpretation of this result is as follows.
A planep = [ px py 1 pc], where(x; y) are the image spa-
tial indices, can be �t to the data points,[· (x; y) x y] 2 R3,
and the intersection of this plane with thex ¡ y plane gives
us the vanishing line. Since the equation of thex ¡ y plane
is · = 0 , simple substitution shows that the equation of the
intersection line (also the vanishing line) isa = [ px py pc].

4. Experimentation

We have performed experiments both qualitatively us-
ing real-world videos as well as quantitatively with rendered
data to test sensitivity to noise. For homogeneous textures
we found that around 2 to 3 minutes of video was usually
required to obtain stable results. All results for transla-
tional dynamic textures were performed using only a pair
of frames. The performance of the proposed approaches is
tested on real videos including, surveillance videos of ports,
heavy traf�c, escalators, dense crowds and a treadmill.

4.1. Qualitative Testing

The algorithms were extensively tested on was port sur-
veillance video, with a �xed perspective camera observing
the port. Figure 4 shows the results on a number of such se-
quences - all results were obtained between a pair of frames.
The dashed line represents the estimate yielded by the af�ne
transformation, which was used as an initialization to the
computation of the elation. The solid line represents the
�nal estimate of the elation. In each sequence the af�ne
transform gives us results in the correct vicinity, and the
elation latches exactly onto the correct horizon. In Figure 5
we show two images of a boat passing along a scene where
we had already estimated the vanishing line. We manually
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(a) (b)
Figure 3. Translational dynamic texture as an elation. (a) The hori-
zon, shown as a white line, is the axis of the elation, and the white
point from which the motion appears to emanate is the vertex.
Both quantities were estimated using the proposed approach. (b)
Magnitude of the motion �eld. The magnitude of motion is zero
(minimum) at the horizon.

identi�ed two points on the boat across the images, and ver-
i�ed that the lines passing through the correspondences did
indeed intersect on the vanishing line. In addition we rec-
ti�ed the images using the af�ne recti�cation matrix and
veri�ed that the transformed lines were parallel. Figure 6
shows the result of the direct algorithm on an escalator se-
quence. Since the camera is already almost fronto-parallel,
the vanishing line is far from the image. Finally, a treadmill
image is recti�ed using the direct method in Figure 7.

Next, we tested the algorithm for homogeneous textures.
Figure 8 shows a plot of the mean motion magnitude for an
IR sequence looking across a lake. The motion magnitudes
were learnt over 3000 frames, and it is clear through inspec-
tion that the points lie approximately on a plane. A video of
the learning process is included in the supplementary mater-
ial. The white line marks the vanishing line estimated from
the motion magnitudes. Although this approach is not as
exact as the direct algorithm for translational motions, the
example validates our model. The constraint of strict spatial
homogeneity can be relaxed as long as the motion is approx-
imately uniform throughout the plane. Figure 9 shows a
much shorter sequence of 117 frames with a dense crowd of
people. Despite the relatively short learning period, the es-
timate of the vanishing line is reasonable. Figures 10 shows
the result on a highway sequence sequence of 1000 frames.
The estimate in this case is not as accurate as could be ex-
pected since the cars do not move at similar speeds and the
scene is comparatively sparse. Despite this the af�ne rec-
ti�cation of the sequence, shown alongside the images, is
still satisfactory. Once the af�ne geometry has been recov-
ered, higher-level analysis of objects and their behaviors is
more meaningful since parallelism, ratio of areas, ratios of
lengths on collinear lines and linear combinations of vectors
(such as centroids) are all af�ne invariants.

(a) (b)

(c)

Figure 5. Af�ne Recti�cation. (a,b) Lines through corresponding
points selected (manually) on the boat over two frames converge
on the estimated vanishing line. (c) After recti�cation the lines are
parallel (meet at the line at in�nity).
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Figure 6. Escalator Sequence. The line in the left image is the
vanishing line of the plane, the top right and middle right images
are the two images used for computing the line and the bottom
right is the recti�ed image.

4.2. Quantitative Testing

The algorithm for translational dynamic textures was
tested quantitatively using the rendered data. A periodic
texture was synthetically generated and translated along a
plane in 3D space. A perspective camera was de�ned to
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Figure 4. Recovering the vanishing lines for translational dynamic textures. The dashed line is the estimate of the horizon provided by the
af�ne approximation, and the solid line is the re�nement using an elation.
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Figure 7. Treadmill images. (a) The source image. (b) Recti�ed
source image.

view the plane, in terms of a homography,H , producing a
conjugate translation. Using the direct algorithm, we recov-
ered an estimate of the vanishing line and vertex. Figure 11
shows how the accuracy of the estimate is affected as noise
strength is increased in the images. The noise was increased
from 0% to 21% of the maximum signal strength, at unit in-

crements, and the accuracy of the estimate of vanishing line
was estimated by the norm of the difference between the
ground truth and the estimated line. At each noise strength,
20 runs were executed (different noise) and the line-scatter
plot is also shown. Figure 11 (a) shows the error norm of
the estimated vanishing line to the true vanishing line, and
Figure 11 (b) shows the error norm of the estimated ver-
tex to the true vertex. The solid plots show the mean error
norms for both tests, and the square markers denote each
run at that noise strength.

5. Conclusion and Future Work

We propose the use of dynamic texture as a cue for re-
covering the af�ne geometry of a plane. We discuss two
types of dynamic textures, translational and homogeneous,
and propose algorithms for each case. For the translational
case a direct algorithm is presented that relates the vanish-
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Figure 8. IR Lake Sequence. (a) The estimated mean of the motion
magnitudes after 3000 frames. (b) Estimates of the vanishing line
from the af�ne transform, the elation, and the motion magnitude.

ing line directly to the image gradients, and for the homoge-
neous case relates the vanishing line directly to the expected
values of motion magnitude. We test our algorithms on a
variety of data, including port surveillance videos, high-
ways, dense crowds, and escalators. There are many fu-
ture directions that can be pursued. First, methods can be
developed to investigate shape from dynamic texture for
curved surfaces, relating texture dynamics at a pixel loca-
tion to the surface normal at that point. Second, in this paper
we have utilized the motion characteristics of dynamic tex-
tures and an interesting direction may be to investigate using
both spatial texture and temporal behavior concurrently. Fi-
nally, the use of isotropy to recover a metric upgrade seems
promising.
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