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Abstract

In this paper, we propose a system for recognizing activities, e.g., walking,
running, marching, skipping, etc. Our system is model-based: we use four-
teen cylinders to model the human body and joint curves to model human
motion in 3-D. Our system uses a single camera and a 3-D model to recognize
activities (using whole body motion). The system will be able to deal with
any arbitrary motion, not necessarily motion parallel to the image plane. We
do not assume to know the height of the person performing activities, nor his
or her distance from the camera. We will be able to deal with the motion of
multiple people in a sequence, who are performing combinations of activities.

1 Introduction

Automatically detecting and recognizing human activities from video se-
quences is a very important problem in motion-based recognition. There
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are several possible applications of the proposed research. One possible ap-
plication is in automated video surveillance and monitoring, where human
visual monitoring is too costly, too risky, and otherwise impractical. One hu-
man operator at a remote host workstation may supervise many automated
video surveillance systems. This may include monitoring of sensitive sites
for unusual activity, unauthorized intrusions, and triggering of significant
events. Another area is detection and recognition of animal motion, with the
primary purpose of discriminating it from the human motion in surveillance
applications. Video games could be made more realistic using an activity
recognition system, where the players control navigation by using their own
body movements. A virtual dance or aerobics instructor could be developed
that watches different dance movements or exercises and offers feedback on
the performance [12]. Other applications include athlete training, clinical
gait analysis, traffic monitoring, digital libraries (most videos are about peo-
ple) and human-computer interface.

In this paper, we propose a model-based approach for recognizing ac-
tivities. The proposed approach for recognizing various human activities is
broken down into several basic steps (see Figure 1). First, the person, or per-
sons, moving through the scene must be located. Once located, a sub-image
around each person is taken. For each sub-image, edges are detected using
the Canny edge detector. Straight lines are then fitted to the edge pixels
using a recursive splitting scheme [3].

We have a set of joint angles for each activity (e.g. walking, running,
skipping, etc.) to be recognized. These joint angles were obtained from Rohr
[26] and Goddard [15]. Each set represents the angles of the various joints
of the human body during a single cycle of the activity that it models. The
posture is a value that indicates a point in the cycle which lies between 0 and
1 inclusive. Given the set of lines found in the sub-image, we need to find
the posture and pose of the model that will fit the lines, where pose is the
rotation and translation.

Given initial posture, we generate our 3-D model for each activity using
the joint angles of posture. Given the 3-D points on the model, the pose can
be estimated. In pose estimation, given a 3-D model and its 2-D projection
from a particular view, the goal is to estimate the rotations and translations.
We use Faugeras’ [14] linear constraint minimization method for camera cal-
ibration for our pose estimation problem to estimate three rotations and
translations of the object (torso) with respect to the camera.
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Once the best pose for that posture is computed, the 3-D model is pro-
jected into 2-D space using both that posture and pose. Based on the dif-
ferences between model lines and input lines, a likelihood measure can be
assigned to this particular pose and posture for each activity.

Possible matches in pose, posture and the activity being performed can
be found by taking those values that produced the best likelihood measures
obtained during the search. Since this may produce several matches, we need
to monitor the scene over time to distinguish the correct activity. We use
a Kalman filter for each activity. Each filter will predict what the model
should look like at a particular time for that activity. Based upon how well
this prediction matches the scene, we can determine if a filter is allowed to
continue or not. In the end, only one filter will remain, and that filter gives
the correct activity.

2 Human Body Modeling Using Cylinders

In our approach, we represent the human body by a volume model consisting
of 14 cylinders connected by joints. One cylinder is used for each body part
we are modeling, which are the head, torso, upper arms, forearms, hands,
thighs, calves, and feet. Fach cylinder is described by two parameters: its
length and the radius of its circular cross-sections. Each cylinder in the model
has its own coordinate system, so all 3-D points on the cylinder correspond to
that cylinder’s coordinate system. The center of the torso is used to describe
the location of the body, and acts as the origin for the 3-D coordinate system
used for all points on all the cylinders. The location of cylinders attached to
the torso cylinder (the head, the upper arms, and the thighs) are defined by
transformations from the origin of the torso coordinate system. From there,
the locations of the remaining cylinders are given as transformations from
the origin of the coordinate system of the cylinder to which they attach, e.g.
the forearms are attached to the upper arms, the calves are attached to the
thighs, and so forth. Thus, all 3-D points on the cylinders can be computed
based upon the location of the center of their cylinder and its orientation.

Some more sophisticated primitives like super-quadrics etc, can also be
used for modeling human body, which may be more accurate from the graph-
ics point of view. But, we feel that from the vision point view, the cylinders
are sufficient and simple to deal with.



3 Human Activity Modeling Using Joint An-
gels

We use a kinematic approach to model the movement of people. The kine-
matic approach explicitly specifies the geometry of objects, for example, po-
sition and orientation. The joint curves with respect to posture are used for
representing the geometric changes.

The joint curves of the shoulder, elbow, hip, and knee in one motion cycle
are used to recognize different activities. The joint curves of the shoulder,
hip, elbow, and knee represent the orientation of the upper arm with respect
to torso, upper leg with respect to torso, lower arm with respect to upper
arm, and lower leg with respect to upper leg respectively.

For modeling walking, we used the data from Rohr [26]. Sixty normal
men ranging in age from 20 to 65 years have been analyzed to obtain the basic
elements of walking. For each of the joints, Rohr used the angle positions at
10 discrete times instants in one cycle.

For modeling running, skipping, and jogging, we used the data from God-
dard [15]. For each activity, three persons are analyzed. Each person has
four samples of the same activity, which means each activity has 12 samples.

Each activity has been standardized to one cycle. The joint angels are
expressed as function of posture, which varies from zero to one. Since the
movement patterns of the body parts are very similar for different persons,
the average data is used. Since all the activities considered here are symmet-
ric movements, the motion curves of the joints are only needed for one side
of the human body. In order to be able to calculate the joint angles in any
postures, these values are interpolated by periodic cubic splines. Given the
length of a cycle, n, for a given activity from the activity detection stage,
we divide the joint curves into n equal intervals to be used in the activity
recognition. This way we will know angels for each frame of a cycle.

Four joint curves are created for each activity. Fast re-projection of these
motion states on a screen reveals that our motion model appears to be fairly
realistic.

Using the proposed framework, we can recognize almost any activity
(whole body movement) or gesture (upper body movement) as far as the
model of activity in terms of joint curves is available. For example, we have
modeled the increase speed gesture, widely used in the Army, using joint



angels involving right upper arm and forearm.

4 Line Correspondence

When we have the 2-D projection of our model, we need to be able to match
the model lines to lines found in the scene. To establish this correspondence,
the lines in both model and scene are represented by their direction, midpoint
and length. For example, the line = + ay + b = 0 is represented by a vector
[a,b,y,1]T, where y is the ordinate of the midpoint and [ is the length.

To determine what 3-D points in the model create edges when projected,
the model is generated for some given rotation and translation around the
camera coordinate system. Based upon the camera’s view, all 3-D points
whose surface normal is perpendicular to the camera angle are the 3-D points
which create edges. These points are then grouped into straight lines.

When we match, we consider a line from the model, represented by the
vector mg, which is [a, b,y,]7, and its covariance matrix Mg (The covariance
matrix can be computed from the uncertainty in edge points, when fitting
straight lines). All lines found in the scene are considered for matching. Each
scene line is represented as a vector corresponding to one of the mappings,
denoted r; and its covariance matrix R;.

To find corresponding lines, we consider all scene lines to be possible
matches. For an ideal match between a model line and a scene line, the
equation r; — mg = 0 would be satisfied. However, such an ideal match
is practically non-existent. So, we need to find which scene line minimizes
this equation. We compute the covariance matrices A; = My + R;, and the
Mahalanobis distances d; = (r; — mo)T(A;)~!(r; — mg) for all lines in the
scene. The scene line with the minimum Mahalanobis distance is considered
to be the match.

See Figure 2 for results of line correspondence.

5 Pose Estimation

In order to accurately track a person and identify the activity being per-
formed, it is necessary to obtain the pose of the person, that is, his rotation
and translation with respect to the camera. To do this, we need to relate the



3-D points in our model to the 2-D points in the scene.

To accomplish the task of pose estimation, a method very similar to
Faugeras’ camera calibration [14] can be used. Where as Faugeras determines
the position and rotation of the camera with respect to some world image
coordinate center, we determine the position and rotation of an object (in
this case, a person) with respect to the camera coordinate system.

For any 3-D point, M, there is a transformation, f’, that will give us the
2-D image point, m. This can be written as m = f’M, where each point is

given in a homogeneous coordinate system.
T
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We can define the matrix P as P = | ql ¢u4 |. For every point 3-
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D point, M; = (X,, Y, Z;), on our model and its corresponding 2-D point,
m; = (u;,v;) in the scene, we can obtain two linear equations using above
equations:

Qier’ — uingi + G14a — U;q34
AAM; — v, A M + qoq — Vigag =

Thus, for N points, we have 2N linear equations that can be written as
Aq =0, where A is of the form A = )32 lg % (1) )82 32 % (1) :z:))g
two rows for every point, 7, and q is the 12x 1 vector [q), g14, 92, go4, 92 , g34]

Using Faugeras’ constraint minimization method, which constrains such
a system of equations to avoid the meaningless solution of q = 0, the trans-
formation matrix P can be found. This is formulated as: ming ||Aq|| subject
to ||qs||* = 1. This involves finding the eigenvectors of a 3 x 3 matrix and

inverting a 9 x 9 matrix. See Figure 2.g for results of pose estimation.

6 Activity Recognition

When the attempt is made to match the scene information with the various
activities, it may be possible for several activities at various points during
their cycle to be considered possible matches. In order to distinguish which
of the possible matches is the actual activity, we use a Kalman filter for each
of the potential activities.

—u;Y;
—v—1Y;

—u; Z;

—viZ;



To match the scene information to a particular activity, we have a state

VeCtor . . . . . .
(X,Y,Z,R,, Ry, R.,p, X, Y, Z R, Ry, R.,p), where X,Y and Z are the 3-D
coordinates of the person (torso) being tracked with respect to the camera,
(Rz, Ry, R.) is the rotation of the person around the camera axes, and pis the
posture (i.e., the point in the cycle), and the remainder are their velocities.

For the Kalman filter, we need a transition matrix, ¢, a weight (covari-
ance) matrix, Q, and a measurement matrix, H.

To initialize each Kalman filter, the data obtained from pose and posture
estimation 1s collected over several frames. This allows us to estimate the
velocities. So, for each potential activity match, we have an initial state
vector al.

In order to determine which of the potential matches is actually the cor-
rect one, all “bad” matches must be eliminated. A Kalman filter for each
activity is used. The idea is that the Kalman filter can estimate what the
pose and posture of the model should be at the next time instant. Based
upon how well that filter’s prediction matches what is in the scene, we can
determine if that filter, and its corresponding activity, is still a possible match
or not.

For each state vector we have at time ¢, the filter predicts what the
next state should be by computing a! = ¢al™' and the covariance matrix
P! = ¢P!7'¢T 4+ Q. The parameters of the predicted state (i.e., the location,
rotation and posture) are used as estimates for generating the 3-D model.
This model is projected, line correspondence is performed, and the pose is
estimated. This gives the measurement vector, r;, which contains the actual
posture and pose of the person in the scene. Also, the covariance matrix, Ry,
is obtained from pose estimation.

Based upon the error in the line correspondence, we can determine if
a filter should be allowed to continue, or be eliminated. The filters whose
predictions produced a poor line correspondence (i.e. the error is above a
threshold) are eliminated. For those matches which fall below the threshold,
an update of the state (and its corresponding gain and covariance matrices)
is computed using:

al = a'+ Ki(r; — Hal)

K3

where K! = P'HT(HP'HT + R;)™!, P! = P! — (K!HP!), r; is the measure-

ment from the current frame and R; is its covariance matrix.



After several frames of continuous processing, the filters corresponding
to incorrect activities should give very poor line correspondences, and can
be dismissed. The filter of the correct activity should consistently give good
line correspondences with its prediction and the scene, and, thus, consistently
give little error. Eventually, only one such filter should remain, and its cor-
responding activity declared the match. Thus, the Kalman filter doesn’t
actually perform the recognition, but gives us the means by which we can
distinguish activities. See Figure 3 for preliminary results of activity recog-
nition with synthetic scenes.

7 Comparison With Other Approaches

Several systems for detecting, recognizing and tracking human activities have
been proposed in the literature (see [6] for a comprehensive review or earlier
work). A brief summary of representative approaches in a tabular form is
given in Figure 4. There are two main classes of approaches: 2-D approaches,
and 3-D model-based approaches. In 2-D approaches no model of a 3-D
body is used, only 2-D motion, e.g. optical flow, is employed to compute
features in a sequence of frames to recognize activities. In 3-D approaches,
a 3-D model of the human body and joint angles are employed. In the
model-based approach, one to four cameras have been used. The types of
tasks, which have been reported include: detection of activities [23], detection
of cyclic motion [2, 23, 27| tracking walkers using a model-based approach
[26, 17], recognizing people by their gait [1, 20], recognizing activities [23],
and recognizing gestures [8, 18, 25, 30, 7].

So far, to our knowledge, there is only one approach, proposed by Polana
and Nelson, for activity recognition. This approach is 2-D, does not use a
model of the human body and motion, and it assumes motion is parallel to
the image plane and assume to know the height of the person.

Davis et. al. [13] employ multiple cameras to compute the joint angels
and a person’s pose using search in the high dimensional space. Metaxas et
al [21] also use multiple cameras to compute both a 3-D body model and a
3-D motion model. In Metaxas et al’s work the problem of recognition is not
addressed. In both of these approaches, the complexity of the system is very
high because they deal with very large degrees of freedom (22 in Davis et
al’s system, even more in Mataxas’s system). Therefore, these systems are



highly prone to noise.

On the other hand, in the proposed approach, we employ single camera

and use a priori known 3-D body model and 3-D motion model to recognize

human activities, thus increasing robustness.
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Figure 1: Block Diagram of the proposed approach.
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Figure 2: Results of line correspondence and pose estimation. (a) Original
image. (b) Tracking window superimposed on the original image. (c) De-
tected edges in the tracking window. (d) Detected scene lines from (c). (e)
Corresponding model lines. (f) Model lines superimposed on the original
image. Computed pose (translation and rotation) is applied to the model,
then projected on the image plane. The lines closely match with the image.
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(d) (e) (f)

Figure 3: Results for activity recognition using synthetic sequences. An un-
known sequence (which happens to be Walking) is attempted to match with
Walking (a—c) and Running (d—f) model using Kalman filter. The frames in
the unknown sequence are superimposed on corresponding model frames of

Walking and Running. In a short time the match stabilizes to walking, the
match for running is poor.
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author persons | 3D Model | segmentation | input | cameras | task motion
Hogg[17] two yes manual 2-D one tracking parallel
walker image p
Rhor[26] one yes automatic 2-D one tracking parallel
walker image p
Nelson|[23] multiple | no automatic 2-D one activity parallel
recognition image p
Adelson[1] multiple | no automatic 2-D one gait parallel
recognition image p
Bobick[4] one yes manual 3-D six ballet general
recognition image p
Little[20] one no manual 2-D one gait parallel
recognition image p
Davis[13] one yes automatic 3-D four tracking, general
recognition
Pentland[22] | one no automatic 3-D two tracking general
Metaxas[21] | one acquired automatic 2-D three tracking general
interactively arm
Proposed multiple | yes automatic 2-D one activity genera
detection &
recognition

Figure 4: Comparison of approaches.
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