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The algorithms for structure from motion tequire solution of the correspondence problem. By
detecting only time-varying tokens, the problem may be significantly simplified. In this paper, a
time-varying corner detector is described which is based on the and operation between the
cornerness and the temporal derivative. It is shown that the corner detectors by Zuniga and
Haralick (JEEE CVPR Conf. 1983, pp. 30-37), Kitchen and Rosenfeld (Partern Recognition
Lett. 1, 1982, 95-102), and Dreschler and Nagel (Proc. IFCAI, 1981, pp. 692-697) are -
equivalent. In this time-varying corner detector, the Zuniga and Haralick, in loc. «it., corner
detector is used for finding the cornerness at a point and the absolute value of difference in
intensity at a point is used to approximate the temporal derivative. The results of the
time-varying cotner detector for the the real scenes and the synthetic images with random
background and random object are shown. © 1984 Academic Press, Inc.

1. INTRODUCTION

Time-varying features play an important role in dynamic scene analysis. Biological
systems are capable of detecting features in the environment which are changing
with time. The features may be varying either due to the motion of -an object or the
observer. The human vision system utilizes both of these means to perceive the
world. Certain objects become clear when we move our eyes, head, or body [3].
Similarly the perception is improved when the objects move.

It is well known that the structure of an object can be determined from its motion,
In -various approaches to structure from motion {12, 9, 11), correspondence of N
points in M frames is required. The correspondence problem is solved by detecting
interesting points in frames. Corners are considered good candidates for establishing
correspondence [2]. In the proposed approaches for structure from motion the corners
are detected in each frame. Since each frame may contain many stationary corners,
in addition to a few moving corners, the correspondence becomes more difficult. If
only moving corners could be detected, then the matching of corners from frame to
frame may become more tractable and computationally efficient. Our efforts to use
corners in each frame to determine motion parameters [6] showed the difficulty in
working with corner detectors and encouraged us to investigate the possibility of
detecting only time-varying corners.

Another application of time-varying corners may be in optical flow computation
in conjunction with Nagel’s approach. Nagel showed that displacement vectors may
be computed, using only local intensity values, at grey level corners [8]. This is not
surprising because at the corners the aperture problem does not exist. As shown in
Fig. 1, it is possible to use local methods to compute displacement components at a
corner. Nagel also developed a method to propagate displacement vectors at corners
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Fi16. 1. Aperture Problem. Local information at point A is not sufficient to give the displacement
information. At B the local information is sufficient to give the displacement of the object.

to other points in the image. The computation of displacement vectors may be more
efficient and correct if only time-varying corners are used in the computation.

Haynes and Jain [4] proposed a time-varying edge detector, which is simple, fast,
and noise insensitive. The time-varying edge detector should find the points which
are edges and which are moving. Therefore, they proposed that the and operator be
used to combine edgeness and motion, which is equivalent to the multiplication. The
operator is given as

E(x,y,0) = ﬂ(j;;y;) *G(f(x,5.1)).

Where f(x, y, %) is a frame at time 7, E, is the time varying edgeness, G is any edge
operator {e.g., 3 X 3 Sobel) and df/dr is temporal derivative.

An important property of this operator is that it can detect the edges which are
weak but have significant motion and the edges which are strong but have weak
motion. The efficacy of this edge operator was demonstrated using several scenes.

In this paper we present a time-varying corner detector which gives good results

even in images having the random background and random object environment. In
the next section we will discnss three gray level corner detectors nronased in the
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recent years and we will show that all th:ee are essentially equivalent. In Section 3
the time-varying corner detector is described. In Section 4 we present the results for
the real and synthetic scenes with the random background and random object.

2. CORNER DETECTION

Many corner detectors have been reported in the literature {10]. In the earlier
approaches, first the image is segmented and then the curvature of the boundary of
the object is computed. If that curvature is above some threshold then that point is
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approaches do not seem to work properly with real scenes. Recently, gray level based
corner detectors have been reported which give good results. The attractive point in
the gray level based comer detectors is that they do not rely on the prior segmenta-
tion. Instead, the segmentation can be made easy by using corners detected [7).
The effort to detect the corners based on the gray levels was made by Beaudet [1],
Beaudet used the DET operator to detect the saddle points at which the gray level
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function g(x, y) is neither maximum nor minimum. Beaudet considers the second-
order Taylor series of function g(x, y) to compute

DET=g. .8, — 83, 1)

where g, g,,, and g, are the second-order partial derivatives. This operator finds
the corners on the both sides of the edge.

The three popular gray level corner detectors are: Zuniga and Haralick [13),
Kitchen and Rosenfeld [7], and Dreschler and Nagel [2]. It can be shown that all

three corner detectors are equivalent. In fact Nagel [8] has shown that the Kitchen
and Rosenfeld corner detector is similar to the Dreschler and Naeel corner detactor
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We will show here that, in principle, the Kitchen—Rosenfeld corner detector is
equivalent to the Zuniga-Haralick corner detector.

2.1. Zuniga—-Haralick Corner Detector

The Zuniga-Haralick corner detector is based on Haralick and Watson’s gray
Jeve] facet model [5]. In this model they fit the bicubic polynomial to the gray level
function. The polynomial used by them is

glx, y) =ky + kox + kyy + kg 2‘*‘-‘5:."5}"'“"6}’2
+hox? + kgx?y + koxy? + kypyP. (2)

Haralick and Watson consider the n+n neighborhood around each pixel and use
a least-square fit to find the coefficients k;’s in (2). For each pixel they find out the
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first and second directional derivatives of fu.nctwn g(x, y). The dcnvanves are taken
in the direction (g,,g,) which is equal to the gradient direction. The pixel is
declared an edge point if the first derivative is above some threshold and the second
derivative is zero,

The comer detector works as follows: at each pixel location the rate of change of
the gradient angle of the fitted function g(x, y) is computed, which gives a measure
of the cornerness. If at any pixel location this cornerness value is above a preset
threshold and that point is an edge point then that pixels is declared as a corner. The
gradient angle & is given by

8

&

tanf =

(3)

Zuniga and Haralick find the directional derivative of {3) in the direction a equal
to (—g,. g,) which is orthog,onal to the gradient direction (g,, g,). Evaluating the
derivative of § at origin and using Eq. (2) for the funcuon £(x, y) they get the
£expression

K= -2(k'§k6 — kyksks + k3k,)
(k2 + £3)"*

, (4)

where X is the rate of change of ¢ which gives the measure of cornerness at the
point (x, y).
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2.2. Kitchen—Rosenfeld Corner Detector

Kitchen and Rosenfeld [7] project the change of gradient direction vector (6, 6,)

along an edge and muitiply the result by the local gradient magnitude. Knchen and
Rosenfeld give the following expression for cornerness:

2
Ko B8yt g,ysx 28:y8x8y (s)
8+ 8

Kitchen and Rosenfeld consider the quadratic polynomial for the gray level function

g(x, y), but, for the sake of the comparison, let us consider the bicubic polynomial
as considered by Haralick and Watson [5]. If we now evaluate all the terms in (5)
considering the polynomial given in Eq. (2) at (0,0) and substitute back in (5), we
get the following expression for the cornerness:

~ 2 k3ky — kyksks + k3k,)

k= (k2 + k2) : ©

2.2 Dre pc{‘hlor-—Nnap] Corner Detector

A BT

Dreschler and Nagel also consider the function g(x, y) and approx:mate it with
the second-order Taylor expansion. They use Beaudet’s operator as given in Eq. (1).
Since Beaudet’s operator gives corner on both sides of the edge, Dreschler and Nagel
apply the following algorithm to eliminate the false corners:

(i) Determine 8xx8,, called Gaussian curvature.

(ii) Select locations of extremal —positive as well as negative-—Gaussian curva-
ture.

(ili) Match a Jocation of maximum positive Gaussian curvature such as P with
a location of extreme negative Gaussian curvature such as B provided that the
directions of those principal curvatures, i.c., g, and 8,, which have opposite sign at
B and P are approximately aligned.

{1\1\ Qn‘mf ?n“\f T "hnrn thao pr.mc;ﬂal cllt“\"at“-le crosses zero. T :". OITE -—-nds
to the corner point.

2.4. Equivalence of Three Corner Detectors

Nagel [8] has shown that their corner detector is equivalent to the Kitchen~
Rosenfeld corner detector. We will show in this section that the Zuniga—Haralick
and Kitchen-Rosenfeld methods are essentially equivalent. The only difference
between the two expressions for cornerness K, given by Zumga and Haralick and
Kitchen and Rosenfeld, in [4, §), respectxvely, is the factor ( gx + g2)°5 which is the

gradient magnitude. The gradient m magnitude can be considered as the measure of

the edgeness. By multiplying the rate of change of gradient direction with the
gradient magnitude, Kitchen and Rosenfeld introduce the and operation between
cornerness and edgeness. In the Zuniga-Haralick corner detector, the edgeness
condition is explicit, i.e., the point is declared as a corner if:

(1) cornerness is above some threshold and
(2) it is an edge point.
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In other words, Zuniga and Haralick first detect the edges, then they compute the
cornerness at each point and apply the above two conditions to detect the comers.
An important point to note here is that due to condition (2), the Zuniga—-Haralick
corner detector eliminates all false corners in the background which might appear
due to noise. The other two comner detectors might not be able to eliminate those
false corners.

When the edge near the corner is blurred, the Kitchen—Rosenfeld corner detector
does not give good results due to the inefficiency of gradient magnitude as a measure
of edgeness. In such a situation, the corner detector responds all the way across the
edge. They solve this problem by using the heuristics of nonmaximum suppression to
edge magnitudes. Since Haralick and Watson's zero crossing edge detector based on
their facet model gives significantly better results than the gradient edge operator,
the Zuniga—Haralick corner detector does not have problems with the blurring.

Thus we can conclude that as far as the cornerness measure is concerned, the
Kitchen-Rosenfeld and the Zuniga-Haralick corner detectors are the same in
principle; they differ only with respect to the edgeness measure and steps in
implementation. Zuniga and Haralick get significantly better results due to the high
quality of edges obtained by using the facet model and the fact that first edges are
determined and then the cornerness is computed only at edge points.

3. TIME VARYING CORNERS

The time-varying cormer detector is based on the and operation between the
cornerness and the temporal derivative

Ct= C,‘V,

where C, is the time varying cornerness, C, is static cornerness, and ¥ is a measure
of the temporal variations at the point.

Consider two frames {1 and {2 of a sequence shown in Fig. 2. There is one object
which is displaced in the frame 2 with respect to f1. The aim is to detect the corners
of the object that have been displaced. We apply the Zuniga and Haralick comer
detector to f1 which gives C,, the cornerness at each pixel. The time-varying operator
v finds the regions in f1 which have changed in the gray level characteristics. For
the time-varying operator ¥ there are two approaches: temporal derivative and
likelihood ratio, which we will discuss below. After applying some threshold to the
product C, the time varying corners can be detected.

3.1. Likelihood Ratio

The likelihood ratio gives an idea about the change in the gray level distribution
around some given neighborhood of a pixel location. This can be used to detect the
changes, due to moving cbjects in the gray levels between two frames. The likelihood
ratio A is defined as

A =(m ; 02) +(( # ; #z)"’)z/(,l.,z), )

where oy, iy, 0,, i, are the variance and mean in frame 1, and the variance and
mean of the corresponding pixels in frame 2, respectively.
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FiG. 2. (a) Frame f1; (b) Frame £2. The 3¢3 neighborhood around the actual corner ¢ in frame f1
contains 4 pixels having value 100 while argund point & there are 6 pixeis having value equal to 100.
Therefore the change, in graylevel distribution, at point & in frame £2, with respect to frame fl, is more
than the change at point .

Consider Fig. 2 where we have shown two frames f1 and £2. The object is
represented by the gray level 100 while background by 255. It is shown that the
object has moved in frame 2 with respect to f1. Now let us find A at corner point ¢
and the point a next to it by considering 2 3 X 3 neighborhood as shown in Figs. 2a
and b. In the considered neighborhood of point ¢ in frame f1, there are four pixels
which have gray levels equal to 100 while the remaining five pixels have gray levels
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equal to 255. In frame {2 all the pixels in the neighborhood corresponding to the
location of ¢ have values equal to 255. Now consider the 3 X 3 neighborhood
around the point a close to point ¢ in frames 1 and 2. It is easy to see that six pixels
in f1 bave the value 100 while the remaining three have the value 255. In £2 each
pixel in the corresponding neighborhood is equal to 255.

It is clear from the above that there is more change in the gray level distributi
point a than at the corner point ¢. Therefore the A for a will be greater than c.
C, for points ¢ and a do not differ much, after multiplying with A it will be hard to
dlstmgmsh between points ¢ and a.

Therefore if a likelihood ratio is used then it will be hard to eliminate the false
corner point. This implies that the likelihood ratio is not suitable for time-varying
corner detection; it will give blurred comers.

n at

3.2. Temporal Derivative

The derivative in the discrete domain can be approximated by the difference
operation. Consider two frames f1 and {2 that we considered in the previous section.
The temporal derivative is approximated by taking the difference between the gray
level of a pixel in f1 and the corresponding gray level of a pixel in f2. The picture
thus obtained is called the difference picture. 1t is easy to see that the entries in the
difference picture will be significant only at the pixel location where the object has
moved. Moreover, this difference is the same for each object pixel. It should be
mentioned here that better results may be obtained by computing the temporal
derivative from more than two frames. In this paper, we report our experiments with
only two frames of a sequence, however,

Note the difference between the temporal derivative and the likelihood ratio. In
the difference picture, each pixel contributes to itself only. While in the likelihood
ratio, many neighborhood pixels also contribute. Due to this fact, there is always
competition between the corner points and the points close to them in the likelihood
ratio approach. But this problem is not encountered in the temporal derivative
approach.

4. RESULTS

In order to study the efficacy of the proposed corner detector, we applied it to
several synthetic and laboratory generated scenes. The synthetic scenes had object
and background with random texture and significant amount of noise added. We
report here results for one of the more difficult scenes. Our experiments with less
noisy scenes showed very good determination of moving corner points.

The results of time varying corner detector are shown in Figs. 3~5. In Fig. 3 the
pictures considered are made of the random background and the random object. We
added 30% uniform random noise to both the background and the object. The
background gray level is a random number between 0 to 255 and the object gray
level is between 0 to 80. Due to the added noise and nonuniform object and the
background, the time-varying comners detected by our operator are expanded to +1
pixels around their actual locations. As it is clear from Fig. 3, even in case of such
extreme noise, good time-varying corners were detected by this approach.

In another experiment with a synthetic scene, both the background and the
moving square were drawn from the same range of random numbers. The random
background and the random object reminds us of the famous Bradick’s illusion. In
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, and object is between 0 to

is added to the background and the object. (B): Frame {2, the object
time varying comers detected by the cperator superimposed in the edge

F16. 3. (A): Frame fl, background is a random number between 0 to 255

80. Uniform noise equal to 30%
moves 3¢3 pixels. (C): -The

image.
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Fi16. 4. (A): Frame fI, background and the object is a random number between 0 to 255. (B): The
object moves 3+3 pixels. (C): The time varying corners detected by the operator, there are some false
corners in side the object. But the operator is able to distinguish between the background and the object.
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F1G. 5. (A): Frame I1, a toy car moving towards left. (B): Frame £2, the car moves with respect to
frame fl. {(C): The time-varying corners detected by the operator. (D). The time-varying corners
superimposed on the edges.

our experiments we have verified this illusion by simulating the random object and
the background in two frames with object displaced in the second frame (see Fig, 4).
From one display it it impossible to tell where the object is. But the location of the
object becomes obvious when the two frames are displayed successively. Qur corner
detector gives time-varying corners in this case as shown in Fig. 4. Note that several
corners are detected within the square also. These are the points of the background

of the random object. These points are correct time-varying, though not moving,
comer points.

In Fig. 5 we have shown two frames of a moving toy car. The time-varying corners
detected by our corner detector are shown in Fig, Sc. The time-varying corners
superimposed on edges are given in Fig. 5d. Some corners adjacent to the right rear
wheel are not detected due to the small area of the neighborhood we considered to fit
the fact model.

5. CONCLUSION

In this paper, we proposed a time-varying corner detector which gives good results
even in the random background and the random object environment with significant
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noise, We have shown that though the comer detectors by Zuniga and Haralick,
Dreschler and Nagel, and Kitchen and Rosenfeld are equivalent in principle, the
Zuniga and Haralick corner detector gives better results due to a powerful edgeness
measure.

We believe that the correspondence problem in structure from motion will be

corners may also be useful in Nagel's approach for the computation of optical flow.
Though we have not yet integrated our corner detector in a system for recovering
structure form motion, we intend to do experiments to see the effectiveness of
time-varying corners in real world dynamic scene analysis.
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