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Iterative shape recovery from multiple images
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Abstract

In general, shape from shading (SFS} involves the solution of an under-determined system, so it is difficult to always obtain a correct and
unique solution. Since only one input image is used, in order to recover the shape of the object as completely as possible, the image has to be
taken with carefu) light source placement in order to illuminate most of the object. Shape from photometric stereo avoids the under-
deterrmined problem by using three inpw images; however, the shape ¢an only be recovered in the areas that are illuminated in all three
images. In real life, when a larger sequence of images is available, it is possible 1o solve these problems,

In this paper, we present a method which recovers shape from a sequence of images taken with different iliumination directions. The
sequence can be of any length (at least three images), and given in any order, as long as the light source directions are not coplanar. The
process can be viewed as cascading shape from photometric stereo, which is formulated in the framework of the linear Kalman filter in order
to iteratively recover and refine the shape and the surface albedo. The algorithm can be repeated in multiple cvcles over the same sequence of
images, which results in an improvement of the recovered shape and albedo. It can also be initiated at any point, stopped at any point, and
continued whenever new images arrive. By allowing a longer sequence of input images, the algorithm provides enough information to

incrementally recover most of a scene with shadow areas. © 1997 Elsevier Science B.V.
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1. Introduction

Shape from shading (SFS) recovers the 3-D shape of an
object from a single image. At each pixel, we know the
brightness and the light source direction. The brightness
can be described as a function of the surface shape and light
source direction according to the Lambertian model. If the sur-
face shape is described in terms of the surface normal, we have a
linear equation with three unknowns. If the surface shape is
described in terms of the surface gradient, we have a nonlinear
equation with two unknowns. In either case, there are more
unknowns then equations, therefore, finding a2 comect and
unique solution to SES is difficult. Another problem in SFS is
that shape in shadow regions cannot be recovered due to the lack
of shading information, so the image must be taken with careful
light source placement in order to illuminate most of the object.

Shape from photometric stereo deals with shape recovery
using shading information from multiple images tlluminated
from different directions. It was introduced by Woodham
[1] in the early 1980s. In this method, Woodham solved for
both the surface normal and the albedo (the ratio of the
amount of reflected light over the amount of incoming
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light) of Lambertian surfaces using three images with
non-coplanar light source directions. The use of three
input images in photometric stereo reduces the nonlinear
shape recovery problem into a linear problem; however, it
does not solve the shadow problem. In fact, it makes the
shadow problem even worse by enlarging the unrecovered
shadow regions, since the shape is only recovered in the
areas illuminated in all three images.

Zhang et al. [2,3] used a longer sequence of images as
input, and iteratively refined the recovered shape by embed-
ding SFS in the extended Kalman filter framework. The use
of more images eliminated unrecovered shadow arcas, and
made shape refinement possible. However, the algorithm
did not deal with varying albedo, and was affected by
some shortcomings of the SFS algorithm embedded in it,
such as the inaccuracy introduced by linearizing the reflec-
tance function.

Lee and Kuo {4] used cascading photometric stereo on
two images with the light source directions orthogonal to
each other in order to guarantee overlapping of the gradient
directions of one reflectance map with the tangent directions
of the other. They applied SES to the first image to obtain a
shape estimate, then used this estimate as an initial value
for SFS on the next image in order to improve the
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results. However, their approach did not deal with a
long sequence of images, and had the same problems as
Zhang et al. [2].

In this paper, we present a new method. Instead of apply-
ing cascading SFS, we apply cascading shape from photo-
metric stereo. The process begins as soon as three images
become available. When the next image arrives, the first of
the three most recently processed images is replaced by the
new image to create another trio of images for processing.
The output from the previous iteration is used as the input
for the next iteration and this process continues until all
images are processed. It is not necessary that we always
replace the first image in the trio by the new image: how-
ever, we do this for convenience (in picking vp the next
image) and consistency (so that all of the images, except
the first two and the last two are processed three times). In
our process, we use a linear Kalman filter to iteratively
recover and refine the shape and the surface albedo. The
estimation process can be performed in multiple cycles (a
cycle is one pass over the entire sequence of input images)
on the same image sequence by repeatedly processing the
sequence to improve the results. This is equivalent to pro-
cessing a longer sequence of images with each image ocour-
ring more than once.

There are several advantages to our approach:

e The use of shape from photometric stereo, rather than
SFS, removes the assumption of constant albedo and
enables us 1o easily recover the albedo, as well as the
shape.

o The use of a linear Kalman filter guarantees an optimal
solution for noisy images.

* By processing the sequence more than one cycle, the
convergence of the Kalman filter can be improved, and
the results enhanced, especially when the number of
images is small.

s Since the images are processed in a cascading manner,
the process can be initiated at any point, stopped at any
point, and continued whenever new images arrive.

s The algorithm can process an input sequence of any
length greater than two, in any order.

» Allowing a longer sequence of input images provides
enough information to incrementally recover most of a
scene with shadow areas.

Note that when only three images are processed our
approach is equivalent to Woodham’s photometric stereo
algorithm [1]. This will be shown in Section 3.

2. Iterative shape recovery from multiple images

We assume Lambertian reflectance and infinite point
source illumination. Let L_(LI,L,, L,} be the unit light
source direction, N = (Ny, Ny, N,) be the unit surface normal,
and p be the albedo. Accordmg to the Lambertian model, the
brightness, I, is proportional to the dot product of the light

source, Z, and the surface normal, N:
I=p(N-L) (1)

For three images, we have three linear equations in‘the form
of Eq. (1}, and can formulate three functions f, fa, f3 as
follows:

fi=p@W-L)~1,
f=p(NL)—L (2)
fi=p(NLD)—1I

where [; (i = 1,2,3) is the brightness and f,,- is the light
source in the ith image. We _can compute X = pN from the
above linear system. Since N is a vnit vector, p will be the
length of X, and N will be the direction of X [1].

A new system of Eq. (2) is formed whenever a new image
becomes available. We want to continually refine the solu-
tion of X by using the estimated X from the previous set of
images as the initial value for the next set of images. This
can be formulated as a linear, discrete time Kalman filtering
problem [5].

The Kalman filter is a useful engmeenng tool that esti-
mates one or more unknown parameters from a set of known
measurements. The parameters are estimated and refined
through the entire set of measurements based on how
good the current measurement is, and how accurate the
current estimate is. The estimate from the previous iteration
is used together with the new measurement in the current
iteration in order to gradually refine the estimate.

In our algorithm, the measurements consist of L and I;
(i=1,2,3). The parameters are represented by a vector
X = pN, which can be computed recursively by the follow-
ing Kalman filter:
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where § is the 3 by 3 covariance matrix of the estimation
error for X, and
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A is a 3 by 3 matrix which indicates the covariance of the
measurcment.

In order to obtain an optimal solution, the Kalman filter
requires that noise in the input data be Gaussian with zero
mean (white noise). We assume that the noise in real images
can be approximated by white noise.

3. Relationship with photometric stereo

In this section, we will show that our method reduces to
standard photometric stereo when processing three images.

It can be shown that the Kalman filter obtains a final
estimate X, which minimizes the following criterion [5]:

c=F -3 & -3

3

+ D (4= MX) WY~ M) (8)
i=1

Here ¥;1s the ith component of ¥, and M, is the ith row of the
3 by 3 matrices M. As the covariance matrix of the estima-
tion error $°7' (Eq. (5)) is initialized to zero, and W' is a
positive definite matrix, Eq. (8) is minimized when ¥ = = MX.
If we eongider three :mnnt |mncpc and an initial estimate

X from Eqgs. (2), and (6) we have

Y afo —F3, LX)

= Sff" ~fd,L,0) ©)
=52’ —s% =D

=1/
From Egs. (2), and (7) we also have

wi =43
ax
- (10
=5X
= S(oN)
Combining Eq. (9) with Eq. (10}, Eq. (8) is minimal when
1=S(oN) (11

This shows that our algorithm is equivalent to Woodham’s
photometric stereo algorithm when the input sequence con-
sists of three images.

4. Results

In this section we will show the input images for each
sequence, shaded output from photometric stereo and our
algorithm using light source << 0,0,1 >, and 3-D plots of
the reconstructed shape from photometric stereo, our
algorithm, and SES for comparison. The photometric stereo

output was obtained by choosing the three images most
suitable for photometric stereo (the light sources are at
equal angles from each other). The SFS output was gener-
ated by two different algorithms, Bichsel and Pentland’s [6]
and Lee and Kuo’s [4]. These two algorithms were used for
comparison simply because according to a recent study they
produce the best results among the most popular SFS algo-
rithms [7] for the images used in this paper. The initial
condition for Bichsel and Pentland’s algorithm is singular
points, which are detected automatically in the algorithm as
the brightest points, There is no initial condition for Lee and
Kuo’s algorithm. Note that both SFS algorithms recover
depth directly, while in the case of photometric stereo and
our algorithm the recovered surface normals are integrated
o obtain 2 depth map. using the algorithm presented in (81

To further understand the integration, we should look at
the algorithm [8] used here. This integration algorithm starts
at one surface point py = (xg,0) {we arbitrarily pick the
center of the image), and assigns it a fixed depth value.
Since the line connecting py and py = (xy + lyy) is
approximately perpendicular to the average normal between
these two points, the dot product of the slope of this line and
the average normal should be zero. As the slope is the
difference in depth between pg and p;, and we know
the normals at these two points, the depth at p, can be
derived easily. This allows us to propagate the depth
along the x-axis. Similarly, we can propagate the depth
along the y-axis.

4.1. Synthetic images

The results shown here are for two synthetic Lambertian
images: vase and Mozart. The images were generated from
range data,

The average recovered albedo error (defined as the abso-
lute difference between the true albedo and the recovered
albedo per pixel) for both photometric stereo and our algo-
rithm will be given in the text. The recovered surface normal
errors are given in Table 1.

4.1 1. Without noise

Fig. 1 shows the results for a sequence of nine Mozart
images. The sequence was generated using light sources
with a constant slant of 50° and variable tilt {tilt was chan-
ged in steps of 40°, starting at 0). The images were generated
with a constant albedo of 0.75. Our algorithm had an aver-
age albedo error of 1.2257 X 10~"; photometric stereo had
an average albedo error of 2.5482 X 107",

Fig. 2 shows the results, including the recovered albedo
mnap, for a sequence of eight vase images. The sequence was
generated using light sources with a constant skant of 60°
and the variable tilt (the tilt was changed in steps of 45°,
starting at 0). The images were generated with a constant
albedo of 0.75. Our algorithm had an average albedo error of
5.8845 % 10™"7; photometric stereo had an average albedo
error of 1.5388 X 107", We can see that both photometric
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Table 1
Surface normal error for synthetic images

Total error Partial error

Qurs Photometric stereo Ours Photometric stereg
Vase
No noise 2.0381 X 1077 0.27 40137 X 107'® 21721 % 10~
o=10"2
1 evele 2.5535 x 1072 0.30 69167 X 1072 7.5252 X 1072
10 cycles 5.7597 X 1073 1.4873 x 1072
20 cycles 40285 X 107 1.0317 % 1072
AAArnre
No noise 1.1411 X 1074 0.11 1.6514 x 1079 53128 x 107"
o= 10"
1 eycle 3.8326 % 1072 0.14 0.3030 0.3087
10 cycles 1.345 < 1073 1.2226 X 1072
20 cycles 1.1493 % 107% 8.7178 x 107}

iy el

AT
(p)

™

Fig. 1. Results for Mozart without noise: (2)-(i) nine input images; (j) shaded output of photometric stereo using input images (a), (d) and (g); (k)—(o) shaded
output of our algorithm after processing images 1, 2, 3; images 2, 3, 4, images 3,4, 5; images 4, 5, 6; and images 5, 6, 7; (p) final shaded output of our algorithm
after processing all images; (q) depth map (integrated from surface normals) from photometric stereo; {r) depth map (integrated from surface normals) from our
algorithm; (s} reconstructed depih map, using SFS by Lee and Kuo (4], from (a).
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Fig. 2. Results for vase without noise: (a)—(h) eight input images; (i) shaded output of photometric stereo using input (a), (¢} and (f); (j)—(n} shaded output of
our algorithm after processing images 1, 2, 3; images 2, 3, 4; images 3, 4, 5; images 4, 5, 6; and images 5, 6, 7; (o) final shaded cutput of our algorithm after
processing all images; (p) depth map (integrated from surface normals) from photometric sterco; (q) depth map (integrated from surface normals) from our
algorithm; (r) reconstructed depth map, using SFS by Bichsel and Pentland [6], from (a), choosing all points with maximal intensity as singuiar points; (s)
recovered albedo map from photometric stereo; (1) recovered albedo map from our algorithm.

stereo and our algorithm recovered a smooth and accurate
qhano
shape.

We also ran our algorithm on images generated with
varying albedo. Fig. 3 shows the results of a vase sequence
generated by two different albedo values (0.5 for the top half
of the vase and 0.75 for the bottom half). Fig. 4 shows a
similar vase sequence, but the albedo is gradualily changed
from 0 (at the top of the vase) to | (at the bottom of the vase)
by setting the albedo to the row number divided by the total
number of rows. As we expected, the algorithm can handle
varying albedo surfaces.

4.1.2. With noise

Gaussian noise with zero mean and 107 variance was
added to the input sequences in order to test the sensitivity to
noise. Since our normalized intensity range is 0 to 1, the
corresponding variance for the intensity range O to 2355
would be 2.55.

The shape of the objects in the synthetic 1images without

noise was recovered well after only one cycle, so
multiple cycles were not used. However, it is worthwhile
to run more c¢ycles on noisy images to stabilize the
results and provide a better recovery. Therefore, for the
sequences with added noise we will also show the results
of our algorithm after 10 cycles. Fig. 5 shows results for the
Mozart sequence. The images were gencrated with a
constant albedo of 0.75. Our algorithm had an average
albeda error of 0.039847 after 1 cycle and 0.001699 after
10 cycles; photometric stereo had an average albedo error of
0.036416.

Fig. 6 shows results, including the recovered albedo map,
for the vase sequence. The images were generated with a
constant albedo of 0.75. Our algorithm had an average
albedo error of 0.008581 after 1 cycle and 0.001913 after
10 cycles; photometric stereo had an average albedo error of
0.009193. Notice that the boundaries of the recovered
regions from photometric stereo have more error due to
the noise. However, our results at the boundary do not
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Fig. 3. Results for vase sequence with two albedo values and no noise: (a)—(h) eight input images; (i) shaded output of photometric stereo using input images
(a), (d) and (g); (j)—(n) shaded output of our algorithm after processing images 1, 2, 3; images 2, 3, 4; images 3, 4, 5: images 4, 5, 6; and images 5, 6, 7; (o) finat
shaded output of our algorithm after processing all images; (p) depth map (integrated from surface normals) from photometric stereo; (g) depth map (integrated
from surface normals) from our algorithm; (f) recovered albedo map from photometric stereo; (s) recoverad albedo map from our algorithm.

have this problem since successive refinements were per-
formed using the Kalman filter.
Fig. 7 shows the results of a vase sequence generated by

t Aifforant alhad 1 3
two different albedo values. Fig. 8 shows a similar va

sequence with variable albedo.

4.1.3. Error analysis

In order to compare our results with those of photometric
stereo, the total and pd.r[ldl errors in the recovered surface
normal were computed. The total error was the error in the
estimated surface normal over the entire image, which was
computed by
S N R+ IV, N IV, -8 )

NP

Here NP is number of pixels, (N,,N,,N,} is the true surface
normal, (N, ﬁ’y, 1\7:) is the recovered surface normal, and the
summation was taken over the entire image. The partial
error was the error in the estimated surface normal over
the regions recovered by photometric stereo. The errors

are given in Table 1 for the sphere, vase, and Mozart
images. For sequences with noise, the results of our algo-
rithm are shown after 1, 10, and 20 cycles to illustrate the

improvement gained by using multiple cycles.

From the error tables, we can see that the more
cycles we run, the better results our algorithm
provides, We achieved significant improvement in both
the partial and the total error over photometric stereo after
10 cycles

In order to show the improvements through multiple
cycles, we ran our algorithm for 20 cycles, then computed
the average albedo error, and the partial and total surface
normal errors, for each cycle. The error plots are shown in
Fig. 9. We can see that ail three errors drop quickly before
10 cycles, and become stable around 20 cycles.

We also ran ¢ur algorithm on images generated with vari-
able albedo and different noise levels. Fig. 10 shows the
partial and total surface normal errors and average albedo
error for different levels of noise from the variable albedo
vase sequence. Qur algorithm provides reasonable results

v
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(p) (a) (x)

(s)

Fig. 4. Results for vase sequence with variable albedo values and no noise: (a)—(h) eight input images; (i) shaded output of photometric stereo using input

images (a), (d) and (g); (j)—(n) shaded output of our algerithm after processing images 1, 2, 3; images 2, 3, 4; images 3,4, 5:images 4, 5, 6; and images 5, 6, 7;

5

(a0} final shaded output of our algerithm after processing all images; {(p} depth map (integrated from surface normals) from photometric stereo; (g} depth map

SUrtace LNy

TIOLOIT e S, ) Cepll Thap

(integrated from surface normals) from our algorithe; (1) recovered albedo map from photometric stereo; (s) recovered albedo map from our algorithm.

for noise levels up to ¢ = 10~ (which is equivalent to 2.55
for the intensity range 0 to 253).

4.2. Real images

In this section we present results for two sequences of real
images. In each figure, the 3-D plots from the algorithms are
shown from different views that best represent the perfor-
mance of the respective algorithm based on our visual
observations,

Fig. 11 shows the results for a sequence of nine images of

f A had H + ~F
a mask. The sequence of light scurces used had a slant of

approximately 45.4° and the tilt changed every 40°, starting
at 10°. Our algorithm was run for 10 cycles. It can be seen
that the newly recovered areas are gradually merged into the
areas already recovered. Note that the 3-D plot of the
integrated surface shape from photometric stereo does not
contain the entire reconstructed surface shown in Fig. 11(j).
This is due to the discontinuity of the recovered surface. For

a surface with discontinuous patches, since we don’t know
relative depths between the different patches, the integration
of depth will only work for each patch separately. Conse-
quently, we only show the plot for the center patch, which
contains the starting point.

Fig. 12 shows the resuits for a sequence of seven images

¥ A had elane
a column. The sequence of light sources used had a slant

of approximately 47.6° and tilts of 130, 210, 290, 10, 90,
170 and 50°. We show our output after 1 cycle and 5 cycles.
Similar to the mask sequence, the resuits were improved
after several cycles.

i oanmh Boiien $ha 2 TY s oo
In each figure, the 3-D plots ar
e

o
o)

b PO I

shown from the view that
best represents the performance of the respective algorithm
based on our visual observation.

5. Conclusions

We have presented an algorithm which gradually
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Fig. 5. Results for Mozart with noise: (2)—(i) nine input images; (j) shaded output of photometric stereo using input images (a), (d) and (g); (k)-(0) shaded
output of our algorithm after processing images 1, 2, 3; images 2, 3, 4; images 3, 4, 5; images 4, 5, 6; and imtages 5, 6, 7; (p) final shaded cutput of our algorithm
after processing atl images; (q) depth map (integrated from surface normals) from photometric siereo; (r) depth map (integrated from surface normal) from our

algorithm: (sY reconstructed depth map, using SFS by Lee and Kuo [4], from (al).

Qg UNIANE, Lo/ ICCONGUIRILCL Ul il dp, USHIE oI5 OF 00 23¢ Dl

recovers and refines the shape and albedo of an object from
a sequence of images taken with different illumination
directions. The process can be viewed as cascading shape
from photometric stereo, formulated in the framework of a
linear Kalman filter in order to iteratively recover and refine
the shape and the surface albedo. The results have shown
that the proposed algorithm has an order of magnitude of
improvement over photometric stereo on noisy images even
if we only consider the partial area recovered by photo-
metric stereo (Table 1). If we consider the entire object
area, the improvement is even greater since this algerithm
can recover larger portions of the object through the use of
more images and multiple cycles. The same is true for the
recovered albedo results. In conclusion, when a longer
sequence of images is available, this algorithm provides
effective shape recovery from noisy images, especially

when the algorithm is run for multiple cycles. It also should
be pointed out that this algorithm is an extension of photo-
metric stereo to a longer sequence of images, not a replace-
ment of photometric stereo. It is equivalent to photometric
stereo in the case of three images.

When there are at least six images available, this algo-
rithm can be extended to recover both the shape and the light
sources (direction and strength) by applying a least squares
fit to recover the light sources first, then to recover the shape
from the estimated iight sources and known intensities [9].
However, the technique of using look-up tables to recover
shape from general reflectance maps [10] will not be easily
integrated into our framework, since the Kalman filter
requires an analytical expression for the reflectance map,
and nonlinear formulas have to be linearized before apply-

ing the Kalman filter.

LX)
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Fig. 9. Error plots, for noisy synthetic images, for our algorithm: total surface normal error, partial surface normal error and average albedo error, (a)—(c) for

Mozart; (d)—(f) for vase.
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Fig. 10. Error plots, for variable albedo vase sequence with different noise levels, for our algorithm: (a) total surface normal error; (b) partial surface normal

error; (¢} average albedo error.
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(x)

Fig. 12. Results for the real images of a column: (a)-(g) seven input images: (h) shaded output from photemetric stereo using input images (a), (¢) and (f); (-
{m) shaded output from our algorithm after processing images 1, 2, 3; images 2, 3, 4; images 3, 4, 5; images 4, 5. 6; and images 3, 6, 7; (n} final shaded cutput
from our algorithm after 5 cycles; (o) depth map (integrated from surface normals) from photometric stereo; (p) depth map (integrated from surface normals)
from our algorithm; (q) reconstructed depth map, using SFS by Bichsel and Pentland [6). from (a), choosing all points with maximal intensity as singular

¥ ol

points; (r) recovered aibedo map from our aigoriihm.
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