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V ideo sensor networks play a vital role in unattended
wide-area surveillance. Most computer vision research
in this area deals with stationary electro-optical sensor

networks, which have topologies with overlapping and non-
overlapping fields of view (FOV) between the sensors.
Recently there has been an increased interest in networks
with sensors on mobile platforms such as mobile robots, all-
terrain vehicles, and unmanned aerial vehicles (UAVs).
Because of the data and time involved, automatic target
detection and recognition (ATD/R) is becoming increasingly
important for both stationary and mobile sensor networks.

The goal of an effective video surveillance system is to
detect targets in the scene and find their correspondence
across frames in a video. Issues inherent in video surveillance
include rapidly changing lighting conditions (i.e., as a result
of cloud cover), the presence of shadows, target occlusion,
and the detection of target entry and exit. 

Targets can either be moving or stationary in an observed
scene. One technique for detecting stationary targets is the
maximum-average-correlation-height approach. In this
technique, the video frame is processed by a bank of linear
correlation filters that are optimized to respond to the
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Automatic target
detection and
recognition for
video sensors
requires a different
method for each
class of topology.
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presence of a specific target object by
producing a peak at the corresponding
location. Each filter is synthesized using
representative training images of a respective
target. This allows the filter to exhibit
distortion tolerance over a limited range of
target orientations. 

Moving objects are typically detected using
background subtraction. The techniques
discussed in this article use multiple levels of
processing during background subtraction.
The first level is pixel-level processing, which
uses color- and gradient-based distributions separately to find
pixels that belong to the foreground (target) or the back-
ground. The second level is region-level processing, which
integrates the gradient and color information. A connected-
component algorithm groups all foreground pixels into
regions. Once the target silhouettes are obtained, target
tracking depends on the network topologies.

Stationary Sensor Topologies
We can class network topologies as stationary sensors with
overlapping FOVs, stationary sensors with non-overlapping
FOVs, or mobile sensors with overlapping FOVs. The 
test networks in the work described here were based on
commercial off-the-shelf components.

Let’s start with the case of the stationary sensor network
with overlapping FOVs, which is the simplest among the
three network topologies. Tracking targets across multiple
cameras involves establishing correspondence between the
detected targets in each camera. We achieve this by
estimating spatial correspondence between cameras using the
camera FOV lines. During training, a single person walks
around in the network of overlapping sensors and the
algorithm recovers the FOV lines automatically. Whenever a
person enters or exits a camera’s FOV and he or she is still
visible in another camera, the system marks that point as a
candidate point (see figure 1). Two such points are sufficient
to mark a camera FOV line, although more points give a
better estimate of the FOV lines using a Hough transform. 

After training, the algorithm solves target correspondence
by giving each target consistent labeling during entry and
exit, using the spatial correspondence (FOV lines) between
cameras. We performed experiments for both human and
vehicle targets. The results in figure A show consistent
labeling across three cameras for two models of vehicles in the
overlapping FOV of the sensors.1

Wide-area surveillance problems do not always offer the
luxury of overlapping FOVs, so we have developed a method
for ATD/R in a network of non-overlapping stationary
sensors.2 This method exploits the redundancy in paths that
people and vehicles tend to follow (i.e., roadways and
walkways/trails). The algorithm learns the network topology
using target appearance and spatio-temporal probability
models (see figure 2).

During training, we model the target appearance in each
camera using color histograms and calculate the change in

target appearance between cameras using a distance measure.
This distance measure is estimated using the modified
Bhattacharya coefficient, a measure of similarity between two
data samples, and is approximated as a Gaussian distribution.

We estimate intercamera space-time probabilities using a
statistical method for density estimation. The feature vector
used for learning the space-time probability density functions
from camera Ci to Cj is a 7-D vector consisting of a 2-D exit
location from Ci, a 2-D entry location from Cj, a 2-D exit
velocity, and the time taken between exit and entry. 

We achieve target correspondence across cameras using a
maximum a posteriori (MAP) estimate of the observation
sequence to maximize target appearance and spatio-temporal
probabilities. Our experiments were conducted with two
different network topologies, one consisting of two sensors
and the other consisting of three sensors in an outdoor scene,
as shown in figure B. In the second experiment, we trained
the system using a 10-minute video sequence with multiple
people in the environment. Testing was performed on a 
15-minute video with 45 intercamera transitions, all of which
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Figure 1 The automatic FOV line estimation for three overlapping
cameras (red, green, and blue) shows consistent labeling for two models
of vehicles. Output after target detection, recognition, and global
correspondence generates unique target IDs across the sensor network.

Figure 2 The software learns the sensor network topology
using the target appearance and spatio-temporal probability
models (top). As a result, it can label objects consistently
across cameras using the MAP estimate of all of the targets
(bottom); each row of images represents the frames from
three sensors at a specific time.



were detected correctly. As can be seen in
figure 2, the system is able to label targets
across cameras consistently.2

Going Mobile
The above-mentioned frameworks
perform well for static network topologies
but are not adaptive to network topology
changes. Because of variations in camera
motion and position over time, conven-
tional methods that exploit appearance or
positional similarities cannot be used.
Rather, our mobile sensor method
benefits from the geometrical similarities
among target trajectories captured across
different cameras. These geometric
similarities are used to solve global target
correspondence. 

Given a video for a single sensor, we
first generate target trajectories by
projecting (warping) all of the target
locations to a reference frame (i.e., the
first frame) using interframe homo-
graphy. We match each trajectory in a
given sensor to all the trajectories in the
rest of the sensors using a maximum
likelihood estimation of the trajectory
similarity measure. This measure is based
on a cost function that uses algebraic and
geometric distances between trajectories.
Because trajectories of the same target in
two different sensors are generated from a
common 3-D trajectory on the ground
plane, we can compute a homography
between these two trajectories with a
direct linear transform algorithm.

The likelihood of correspondence
between two target trajectories is based
on the re-projection distance (based on
intertrajectory homography) between
them. In the case of two moving sensors,
we can find the global correspondence
using maximum matching of a complete
bi-partite graph, in which all of the nodes
in a bi-partition represent the trajectories
from a particular sensor. The edge
weights between these bi-partitions
constitute the correspondence likelihood
estimates. 

A more complex scenario involves
multiple sensors detecting several targets
simultaneously. In order to obtain 
a globally optimal trajectory corres-
pondence, the solution is equivalent to
finding maximum matching of the split
G* of the directed acyclic weighted
graph D.3

Figure 3 An experiment with only two targets in two sensors has two possible hypotheses
(left), making the correct solution obvious on plots of log likelihood versus time. It takes
longer to detect the unique hypotheses in a scenario with two sensors, three targets, and six
hypotheses (right) because of the geometrical similarities at the start of the 3-D trajectories.



We performed experiments on controlled indoor sequences
and the outdoor UAV videos, assessing the effectiveness of
the likelihood maximization estimate for the global
correspondence hypotheses (see figure 3). The method was
able to detect the same three targets on the ground in sample
frames from two different detectors (see figure 4). 

Mosaic images provide better visualization of the tracking
scenario. Although the videos in question had short temporal
overlap (less than a minute), the estimated target correspon-
dence was correct. The final results are also shown as the
blended image of two mosaics using a quadratic color
transfer function. The trajectories of three cars are shown in
red, blue, and green. 

As unattended sensors play an ever-greater role in security,
the need for ATD/R increases. We have developed and tested
three different approaches for ATD/R in video sensor
networks with different network topologies of stationary and
mobile sensor nodes. Future challenges include ATD/R
scenarios with mobile sensor nodes that have non-planar
FOVs. In this case, planar trajectories generated by target
motion would not be a viable option. This is significant not
only to low-flying airborne sensors but also to sensors aboard
mobile robots.

Another challenge is ATD/R with mobile sensor nodes
having non-overlapping FOVs. One approach is to benefit
from supplementary calibration data, such as gyro and GPS,
for finding the solution.  oe
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Figure 4 In sample-time-synchronized frames from UAV 1
(left) and UAV 2 (right), the method was able to recognize
the same targets across different sensors (red, green, and
blue bounding boxes).
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