Uncertainty Estimation in Medical Image Deep Learning
Jasmine Sun1 and Laura Brattain, PhD2

1Washington University in St. Louis, 2University of Central Florida

Introduction

Goal:
- Identify key anatomical landmarks in the neck for emergency airway access guidance
- Develop a real-time deep learning bounding box detector for neck ultrasound data
- Ensure reliable AI is a priority for rapid and safe procedure guidance
- Quantify AI model uncertainty to flag overconfident detections for human attention

Motivation:
- AI models often overestimate their confidence
- Uncertainty estimation can help identify erroneous detection
 - Minimizes risk of misdiagnosis/mistreatment
 - Helps build trust in medical AI tools

Materials & Methods

Dataset:
- 6 subjects, 3,060 images
 - Neck ultrasound images from various angles around the neck to simulate airway assessment
 - 11,142 annotations
 - Bounding boxes and class labels generated by airway specialists using YOLOMark, an opensource annotation tool

4 classes
- Model trained on thyroid cartilage (471 samples, 4.2%), strap muscle (6,465 samples, 58.0%), tracheal ring (1,694 samples, 15.2%), and thyroid gland (2,512 samples, 22.5%)

Computing Resources:
- Utilized Newton Visualization GPU Cluster at UCF ARCC

Object Detector:
- YOLOv9c (You Only Look Once) [2]
 - Chosen for its speed and accuracy despite being an efficient, lightweight model
 - Train and fine-tune using 6-fold cross validation

Uncertainty Estimator:
- Gaussian Mixture Model based Uncertainty Estimation [3]
 - Extracts epistemic uncertainty from an object detector
 - During training: model uses an Anchor loss term to learn a structured logit space
 - After training: defines a set of Gaussian Mixture Models for each known class
 - During deployment: obtain epistemic uncertainty measurement by computing log likelihood that a detected object belongs to a class

Initial Model:
- YOLOv9c
- Image size: 640x640
- Optimizer: AdamW
- Learning rate: 0.001
- Epochs: 200
- Early stopping
- Batch size: 32
- Dropout: 0.1
- Freeze: 10
- Object loss gain: 0.5
- Average mAP50: 0.788

Finetuning hyperparameters:
- Built off initial model
- Class loss gain: 1.0
- Object loss gain: 0.5
- Dual focal loss: 2.0
- Implemented data augmentation:
 - Scaling: 0.2
 - Shear: 0.2
 - Left-right flip: 0.2
 - Mosaic: 0.5
 - Mixup: 0.5

Addressing class imbalance (final model):
- Strap muscle makes up 58% of samples whereas thyroid cartilage makes up only 4.2% of samples
- Built off fine-tuned model
- Class weights used: [5.914, 0.431, 1.644, 1.109] for thyroid cartilage, strap muscle, tracheal ring, and thyroid gland, respectively
 - Calculated by: $w_i = \frac{N_i}{\sum_j N_j}$

Experimental Results

Goal:
- Improve classification, decrease overfitting, predict accurate bounding boxes, and improve AI model robustness from different ultrasound angles

Uncertainty Estimation Results

Right:
- Detections of tracheal ring w/ 0.30 confidence, 0.76 uncertainty and thyroid gland w/ 0.50 confidence, 1.16 uncertainty
- Flag for human attention

Below:
- Red lines indicate need for human attention (low confidence/high uncertainty)

Conclusion

- Developed real-time neck landmark detection AI models
- Finetuned YOLO parameters such as loss, data augmentation, and implemented class weight-base loss function
- Improved area under curve (AUC) and bounding box detections and classifications across classes
- Decreased amounts of missed detections and false positives
- Implemented GMM-based real-time uncertainty estimations to catch overconfident model predictions

Future Work

- Compare the GMM-based uncertainty estimator with other methods
- Compare YOLO performance with other object detectors
- Implement model in ultrasound device for real-time detection and uncertainty for use in clinical settings

References

Acknowledgements

- Dr. Mubarak Shah, Dr. Niels da Vitoria Lobo, and Melody Halbert at the UCF CRCV
- Dr. Greg Dion at the University of Cincinnati