CAP5415
Computer Vision

Yogesh S Rawat
yogesh@ucf.edu
HEC-241
Introduction to Convolutional Neural Networks

Lecture 6
An interesting quote to cheer you up...

Deep Learning

What society thinks I do
An interesting quote to cheer you up...

Deep Learning

What society thinks I do

What my friends think I do
An interesting quote to cheer you up...

Deep Learning

What society thinks I do
What my friends think I do
What other computer scientists think I do
An interesting quote to cheer you up...

Deep Learning

What society thinks I do
What my friends think I do
What other computer scientists think I do
What mathematicians think I do
An interesting quote to cheer you up...

Deep Learning

What society thinks I do
What my friends think I do
What other computer scientists think I do
What mathematicians think I do
What I think I do
An interesting quote to cheer you up...

Deep Learning

What society thinks I do
What my friends think I do
What other computer scientists think I do
What mathematicians think I do
What I think I do
What I actually do

from theano import *
CNN – example: depth estimation
CNN – example: depth estimation

CNN – example: depth estimation

Super-resolution

https://ai.googleblog.com/2021/07/high-fidelity-image-generation-using.html?m=1
Convolutional Neural Network (CNN)

• A class of Neural Networks
 • Takes image as input (mostly)
 • Make predictions about the input image
History

• The LeNet architecture (1990s)

Gradient-based learning applied to document recognition
First Strong Results

- **AlexNet 2012**
 - Winner of ImageNet Large-Scale Visual Recognition Challenge (ILSVRC 2012)
 - Error rate – 15.4% (the next best entry was at 26.2%)

Imagenet classification with deep convolutional neural networks
Today: CNNs are everywhere

Classification
Today: CNNs are everywhere

Object detection

Semantic Segmentation

Faster R-CNN: Ren, He, Girshick, Sun 2015

Today: CNNs are everywhere

Image captioning

"Show and tell: A neural image caption generator."

Style transfer

A Neural Algorithm of Artistic Style
L. Gatys et al. 2015.
CNN – Not just images

• Natural Language Processing (NLP)
 • Text classification
 • Word to vector

• Audio Research
 • Speech recognition
 • Can be represented as spectrograms

• Converting data to a matrix (2-D) format
 • 1D convolution – Audio, EEG, etc.
 • 3D convolution - Videos
Background

What we already know!
General CNN architecture
General CNN architecture
What is a (digital) Image? - recap

• Definition: A digital image is defined by *integrating* and *sampling* continuous (analog) data in a spatial domain [Klette, 2014].

Left hand coordinate system
General CNN architecture
Filtering - recap

- Image filtering: compute function of local neighborhood at each position

\[h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l] \]

2d coords = k, l 2d coords = m, n
Filtering - recap

• Output is linear combination of the neighborhood pixels

\[
\begin{bmatrix}
1 & 3 & 0 \\
2 & 10 & 2 \\
4 & 1 & 1
\end{bmatrix} \times \begin{bmatrix}
1 & 0 & -1 \\
1 & 0.1 & -1 \\
1 & 0 & -1
\end{bmatrix} = \begin{bmatrix}
\text{Image} & \times & \text{Kernel} & = & \text{Filter Output}
\end{bmatrix}
\]
Correlation (linear relationship) - recap

\[f \otimes h = \sum_k \sum_l f(k, l)h(k, l) \]

\[f = \text{Image} \]
\[h = \text{Kernel} \]

\[
\begin{array}{ccc}
 f_1 & f_2 & f_3 \\
 f_4 & f_5 & f_6 \\
 f_7 & f_8 & f_9 \\
\end{array}
\quad \otimes \quad
\begin{array}{ccc}
 h_1 & h_2 & h_3 \\
 h_4 & h_5 & h_6 \\
 h_7 & h_8 & h_9 \\
\end{array}
\]

\[
f \otimes h = f_1 h_1 + f_2 h_2 + f_3 h_3 + f_4 h_4 + f_5 h_5 + f_6 h_6 + f_7 h_7 + f_8 h_8 + f_9 h_9
\]
Convolution – recap

\[f \ast h = \sum_k \sum_l f(k, l)h(-k, -l) \]

f = Image

h = Kernel

f

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_4</td>
<td>f_5</td>
<td>f_6</td>
</tr>
<tr>
<td>f_7</td>
<td>f_8</td>
<td>f_9</td>
</tr>
</tbody>
</table>

h

<table>
<thead>
<tr>
<th>h_1</th>
<th>h_2</th>
<th>h_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_4</td>
<td>h_5</td>
<td>h_6</td>
</tr>
<tr>
<td>h_7</td>
<td>h_8</td>
<td>h_9</td>
</tr>
</tbody>
</table>

\[f \ast h = f_1 h_9 + f_2 h_8 + f_3 h_7 \]
\[\quad + f_4 h_6 + f_5 h_5 + f_6 h_4 \]
\[\quad + f_7 h_3 + f_8 h_2 + f_9 h_1 \]
Sobel Edge Detector

Image I

\[
\begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{bmatrix}
\]

\[
\frac{d}{dx} I
\]

\[
\frac{d}{dy} I
\]

\[
\sqrt{\left(\frac{d}{dx} I\right)^2 + \left(\frac{d}{dy} I\right)^2}
\]

Threshold → Edges
General CNN architecture
Multi-layer perceptron (MLP) – recap

• ...is a ‘fully connected’ neural network with non-linear activation functions.

• ‘Feed-forward’ neural network
General CNN architecture
Learning phases

Training

Images

Labels

Image Features

Training

Trained classifier

Testing

Image not in training set

Image Features

Apply classifier

Prediction

Slide credit: D. Hoiem and L. Lazebnik
End to end learning!
Neural Network vs CNN

• Image as input in neural network
 • Size of feature vector = HxWxC
 • For 256x256 RGB image
 • 196608 dimensions

• CNN - Special type of neural network
 • Operate with volume of data
 • Weight sharing in form of kernels

Source: http://cs231n.github.io
Fundamental operation
Convolution

- Core building block of a CNN
 - Spatial structure of image is preserved

A filter/kernel is convolved with the image
Convolution

• Convolution at one spatial location

32x32x3 image

3x3x3 filter

Result of convolution

1 number
Convolution

- Convolution over whole image
Convolution

• Multiple filters

32x32x3 image

Convolve over all spatial locations

2 3x3x3 filter

Activation maps (feature maps)

32
32
32
30
30
30
1
3
3
Convolution layer

• One convolution layer
 • 6 3x3x3 kernels

32x32x3 image

Activation maps
Convolutional Network

• Convolution network is a sequence of these layers
Convolutional Network

- Convolution network is a sequence of these layers
Parameters

Convolve over all spatial locations
Parameters

32x32x3 image

Convolution layer

Activation maps

6 3x3x3 kernels – 6x3x3x3x3 parameters = 162
Convolution Operation

• Convolution of two functions f and g

\[
(f \ast g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau
\]

In CNN we use 2D convolutions (mostly)
Sobel Edge Detector – recap

Image I

\[
\begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{bmatrix}
\]

\[
\frac{d}{dx} I
\]

\[
\frac{d}{dy} I
\]

\[
\left(\frac{d}{dx} I\right)^2 + \left(\frac{d}{dy} I\right)^2
\]

Threshold

Edges
Demo

```
1  1  1  0  0
0  1  1  1  0
0  0  1  1  1
0  0  1  1  0
0  1  0  0  0
```

Input image

```
1  0  1
0  1  0
1  0  1
```

filter

```
4
```

output
Demo

Input Image

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Filter

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Output

```
4 3
```

9/21/2021

CAP5415 - Lecture 6
Demo

Input image

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Filter

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>
Demo

Input image

Output

Filter
Demo

Input image

Filter

Output
Convolution - Intuition

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Convolution - Intuition
Convolution - Intuition

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\ast
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
1x1 + 1x1 + \ldots + 1x1 = 5
\]
Convolution - Intuition
Convolution - Intuition

\[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
\end{array} \]

\[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
\end{array} \]

\[\begin{array}{cccccc}
* & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 1 & 0 & 0 \\
& 0 & 1 & 0 & 1 & 0 \\
& 1 & 0 & 0 & 0 & 1 \\
& 0 & 0 & 0 & 0 & 0 \\
\end{array} \]

\[1 \times 1 = 1 \]
Convolution

• Multiple filters

32x32x3 image

Convolve over all spatial locations

Activation maps (feature maps)

2 3x3x3 filter

32x32x3 image

32
Convolution - Intuition

Source: https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/
2D Convolution - dimensions

7x7 map

3x3 filter

Output activation map 5x5
Output size
N-F+1
(7 – 3 + 1) = 5

N – input size
F – filter size
Stride

7x7 map

3x3 filter

Filter applied with stride 2
Stride

7x7 map

3x3 filter

Filter applied with stride 2
Stride

7x7 map

3x3 filter

Filter applied with stride 2

Activation map size 3x3
Output size
\[(7-3)/2 + 1 = 3\]

\[(N-F)/S + 1\]
Stride

7x7 map

3x3 filter

Filter applied with stride 3
Stride

7x7 map

3x3 filter

Filter applied with stride 3

Cannot cover perfectly

Not all parameters will fit
Stride

7x7 map

3x3 filter
Output size \((N-F)/S + 1\)
\(N = 7, F = 3\)

Stride 1
\((7-3)/1 + 1 \Rightarrow 5\)

Stride 2
\((7-3)/2 + 1 \Rightarrow 3\)

Stride 3
\((7-3)/3 + 1 \Rightarrow 2.33\)
Padding

- Zero padding in the input

For 7x7 input and 3x3 filter

If we have padding of one pixel

Output

7x7

Size (recall \(\frac{N-F}{S}+1\))

\(\frac{N-F+2P}{S} + 1\)
Padding

• Zero padding in the input

```
0 0 0 0 0 0 0 0 0
0          0
0          0
0          0
0          0
0          0
0          0
0          0
0 0 0 0 0 0 0 0 0
```

Common to see, (F-1)/2 padding with stride 1 to preserve the map size

\[N = \frac{(N-F+2P)}{S} + 1 \]

\[\Rightarrow (N-1)S = N-F+2P \]

\[\Rightarrow P = \frac{(F-1)}{2} \]
Pooling

• Invariance to small translations of the input
Pooling

- Makes the representations smaller
- Operates over each activation map independently
Pooling

- Kernel size
- Stride

Single depth slice

\[
\begin{array}{cccc}
1 & 1 & 2 & 4 \\
5 & 6 & 7 & 8 \\
3 & 2 & 1 & 0 \\
1 & 2 & 3 & 4 \\
\end{array}
\]

Max pool with 2x2 filters and stride 2

\[
\begin{array}{cc}
6 & 8 \\
3 & 4 \\
\end{array}
\]
Visualizing CNN

Source: http://cs231n.github.io
AlexNet: Network Size

- Input 227x227x3
- 5 convolution layers
- 3 dense layers
- Output 1000-D vector
AlexNet : Network Size

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- What is the output volume size? \((227 - 11)/4 + 1 = 55\)
- What is the number of parameters? \(11 \times 11 \times 3 \times 96 = 35K\)
AlexNet: Network Size

- After CONV1: 55x55x96
- Second layer (POOL1): 3x3 filters applied at stride 2
- What is the output volume size? \((55-3)/2+1 = 27\)
- What is the number of parameters in this layer? 0
AlexNet : Network Size

- After POOL1: 27x27x96
- Third layer (NORM1): Normalization
- What is the output volume size? 27x27x96
AlexNet: Network Size

1. [227x227x3] INPUT
2. [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
3. [27x27x96] MAX POOL1: 3x3 filters at stride 2
4. [27x27x96] NORM1: Normalization layer
5. [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
6. [13x13x256] MAX POOL2: 3x3 filters at stride 2
7. [13x13x256] NORM2: Normalization layer
8. [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
9. [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
10. [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
11. [6x6x256] MAX POOL3: 3x3 filters at stride 2
12. [4096] FC6: 4096 neurons
13. [4096] FC7: 4096 neurons
14. [1000] FC8: 1000 neurons (class scores)

Network Size

<table>
<thead>
<tr>
<th>Layer</th>
<th>Size</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV1</td>
<td>35K</td>
<td></td>
</tr>
<tr>
<td>MAX POOL1</td>
<td>307K</td>
<td></td>
</tr>
<tr>
<td>NORM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONV2</td>
<td>884K</td>
<td></td>
</tr>
<tr>
<td>MAX POOL2</td>
<td>1.3M</td>
<td></td>
</tr>
<tr>
<td>NORM2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONV3</td>
<td>442K</td>
<td></td>
</tr>
<tr>
<td>CONV4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONV5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX POOL3</td>
<td>37M</td>
<td></td>
</tr>
<tr>
<td>FC6</td>
<td>37M</td>
<td></td>
</tr>
<tr>
<td>FC7</td>
<td>16M</td>
<td></td>
</tr>
<tr>
<td>FC8</td>
<td>4M</td>
<td></td>
</tr>
</tbody>
</table>
Visualizing Convolution

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Why not correlation neural network?

• It could be
 • Deep learning libraries actually implement correlation

• Correlation relates to convolution via a 180deg rotation
 • When we learn kernels, we could easily learn them flipped
Questions?

Sources for this lecture include materials from works by Abhijit Mahalanobis, Andrej Karpathy, and Fei Fei Li