PyTorch Tutorial - II

Lecture 8
import torch

x = torch.ones(2,2)
y = torch.ones(2,1)
w = torch.randn(2,1,requires_grad=True)
b = torch.randn(1,requires_grad=True)
Training procedure

- Define the neural network
- Iterate over a dataset of inputs
- Process input through the network
- Compute the loss
- Propagate gradients back into the network’s parameters
- Update the weights of the network
Define a CNN Network

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 # 1 input image channel, 6 output channels, 5x5 square convolution # kernel
 self.conv1 = nn.Conv2d(1, 6, 5)
 self.conv2 = nn.Conv2d(6, 16, 5)
 # an affine operation: y = Wx + b
 self.fc1 = nn.Linear(16 * 5 * 5, 120)
 self.fc2 = nn.Linear(120, 84)
 self.fc3 = nn.Linear(84, 10)

 def forward(self, x):
 # Max pooling over a (2, 2) window
 x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
 # If the size is a square you can only specify a single number
 x = F.max_pool2d(F.relu(self.conv2(x)), 2)
 x = x.view(-1, self.num_flat_features(x))
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

 def num_flat_features(self, x):
 size = x.size()[1:] # all dimensions except the batch dimension
 num_features = 1
 for s in size:
 num_features *= s
 return num_features
Training procedure

• Define the neural network
• Iterate over a dataset of inputs
 • Process input through the network
 • Compute the loss
 • Propagate gradients back into the network’s parameters
 • Update the weights of the network
Loading data - torchvision

• Torchvision
 • it’s extremely easy to load existing datasets.

```python
import torchvision
import torchvision.transforms as transforms
```
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose([transforms.ToTensor(),
 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data',
 train=True, download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(trainset,
 batch_size=4, shuffle=True, num_workers=2)
Loading data - torchvision

```python
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

testset = torchvision.datasets.CIFAR10(root='./data',
                                       train=False, download=True, transform=transform)

testloader = torch.utils.data.DataLoader(testset,
                                         batch_size=4, shuffle=False, num_workers=2)
```
Training procedure

• Define the neural network
• Iterate over a dataset of inputs
• Process input through the network
 • Compute the loss
 • Propagate gradients back into the network’s parameters
 • Update the weights of the network
def forward(self, x):
 # Max pooling over a (2, 2) window
 x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
 # If the size is a square you can only specify a single number
 x = F.max_pool2d(F.relu(self.conv2(x)), 2)
 x = x.view(-1, self.num_flat_features(x))
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)

 return x
Training procedure

• Define the neural network
• Iterate over a dataset of inputs
• Process input through the network
• Compute the loss
 • Propagate gradients back into the network’s parameters
 • Update the weights of the network
Loss function

• A loss function takes the (output, target) pair of inputs
• Computes a value that estimates how far away the output is from the target.
• There are several different loss functions under the nn package.
• A simple loss can be
 • nn.MSELoss
 • It computes the mean-squared error between the input and the target.
Loss function

output = net(input)
target = torch.randn(10)
a dummy target, for example
target = target.view(1, -1)
make it the same shape as output

criterion = nn.MSELoss()

loss = criterion(output, target)
Training procedure

• Define the neural network
• Iterate over a dataset of inputs
• Process input through the network
• Compute the loss
• Propagate gradients back into the network’s parameters
• Update the weights of the network
Gradient computation

\[
\text{output} = \text{net} (\text{input})
\]

\[
\text{loss} = \text{criterion} (\text{output}, \text{target})
\]

\[
\text{loss} . \text{backward} ()
\]
Training procedure

• Define the neural network
• Iterate over a dataset of inputs
• Process input through the network
• Compute the loss
• Propagate gradients back into the network’s parameters
• Update the weights of the network
Update parameters

```python
import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()  # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()      # Does the update
```
Pop Quiz?

Total training samples = 80000
Batch-size = 50
Each iteration takes 30 seconds
How many hours for 3 epochs of training?
40 seconds to answer!
Pop Quiz?

Total training samples = 80000
Batch-size = 50
Each iteration takes 30 seconds
How many hours for 3 epochs of training?

40 seconds to answer!
Full training

```python
net = Net()

trainloader = torch.utils.data.DataLoader(
    trainset, batch_size=4,
    shuffle=True, num_workers=2)

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(net.parameters(),
                       lr=0.001, momentum=0.9)
```
Full training

```python
for epoch in range(2):
    # loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # training code for each batch
        # ... (training code)

    print('Finished Training')
```
Full training

for epoch in range(2):
 running_loss = 0.0
for i, data in enumerate(trainloader, 0):
 # get the inputs;
 inputs, labels = data

 # zero the parameter gradients
 optimizer.zero_grad()
 ...

Full training

for epoch in range(2):
 for i, data in enumerate(trainloader, 0):
 ...
 # forward + backward + optimize
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 ...

Full training

for **epoch** in **range** (2):
 for i, data in **enumerate**(trainloader, 0):
 ...
 # print statistics
 running_loss += loss.item()
 if i % 2000 == 1999: # every 2000 batches
 print('[%d, %5d] loss: %.3f' %
 (epoch+1, i+1, running_loss/2000))
 running_loss = 0.0
Full training

for *epoch* in *range*(2):
 # loop over the dataset multiple times
 running_loss = 0.0
 for i, data in *enumerate*(train_loader, 0):
 # training code for each batch
 print('Finished Training')

PATH = './cifar_net.pth'
torch.*save*(net.*state_dict()*(), PATH)
Testing

dataiter = iter(testloader)
images, labels = dataiter.next()

net = Net()
net.load_state_dict(torch.load(PATH))
outputs = net(images)

_, predicted = torch.max(outputs, 1)
Training on GPU

• Let’s first define our device

```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
```

```python
inputs, labels = data[0].to(device), data[1].to(device)
```
Questions?

Sources for this lecture include materials from pytorch.org