Modeling Multi-Label Action Dependencies for Temporal Action Localization

Praveen Tirupattur†, Kevin Duarte†, Yogesh S Rawat‡, Mubarak Shah‡
Center for Research in Computer Vision
University of Central Florida, Orlando, Florida, USA
†{praveentirupattur, kevin_duarte}@knights.ucf.edu
‡{yogesh, shah}@crcv.ucf.edu

Abstract

Real-world videos contain many complex actions with inherent relationships between action classes. In this work, we propose an attention-based architecture that models these action relationships for the task of temporal action localization in untrimmed videos. As opposed to previous works that leverage video-level co-occurrence of actions, we distinguish the relationships between actions that occur at the same time-step and actions that occur at different time-steps (i.e., those which precede or follow each other). We define these distinct relationships as action dependencies. We propose to improve action localization performance by modeling these action dependencies in a novel attention-based Multi-Label Action Dependency (MLAD) layer. The MLAD layer consists of two branches: a Co-occurrence Dependency Branch and a Temporal Dependency Branch to model co-occurrence action dependencies and temporal action dependencies, respectively. We observe that existing metrics used for multi-label classification do not explicitly measure how well action dependencies are modeled, therefore, we propose novel metrics that consider both co-occurrence and temporal dependencies between action classes. Through empirical evaluation and extensive analysis, we show improved performance over state-of-the-art methods on multi-label action localization benchmarks (MultiTHUMOS and Charades) in terms of f-mAP and our proposed metric. Code is publicly available at https://github.com/ptirupat/MLAD.

1. Introduction

Understanding and localizing actions in complex video sequences is a heavily researched problem in computer vision. The task of action localization in the untrimmed video involves predicting the action, or actions, present at each time-step of the video sequence. Several works present top-down methods, that propose temporal regions of a video which are then classified and refined [5, 12, 38, 4, 14, 54]. Other approaches produce bottom-up predictions for each time-step directly from the frame-level or clip-level features [24, 22, 26, 37, 27]. Recent bottom-up methods tend to perform best on the multi-label case, where multiple actions can be present within the same time-step.

Although these works achieve strong multi-label action localization performance, they do not explicitly model the relationships between the different action labels, which can be extremely useful for determining the presence or absence of classes within a video. Previous works have used label co-occurrence to improve performance on image classification [44, 49, 9], and video action recognition [2, 30]. However, the later works measure the video-level co-occurrence of actions, which does not differentiate between actions that occur within the same time-step and across different time-steps. This may be acceptable when the problem is video-level single-label action recognition, but when the task is
to temporally localize multiple actions (as is the case with
multi-label temporal action localization) the distinction be-
 tween these co-occurrences allows for more fine-grained
modeling of action relationships. We define these distinct
action class relationships as action dependencies.

Videos contain two types of action dependencies: i) co-
occurrence dependencies, involving actions that occur at
the same time (this is most analogous to object class co-
ocurrence within images), and ii) temporal dependencies,
involving actions that precede or follow each other. To illus-
trate, consider Figure 1 showing sample frames from pole
vault and basketball videos. An example of a co-occurrence
dependency is present in the first video snippet: the action
“run” often occurs with the action “basketball dribble” in a
basketball game, so the presence of one action gives addi-
tional prior information about the other. The second video
snippet is an example of a temporal dependency. Using
the available label information from the previous clips, one
could infer the label following “jump” to be “fall” in the fi-
nal clip even without visual or motion features correspond-
ing to the person performing the action.

In this work, we present a method that leverages both
action dependency types to improve learned feature repre-
sentations for the task of multi-label temporal action detec-
tion. We propose an attention-based layer to refine class-
level features based on these dependencies. Co-occurrence
dependencies are modeled by refining action features based
on the presence, or absence, of other actions within a time-
step; temporal dependencies are modeled by refining fea-
tures based on all the time-steps of an input video sequence.
In both cases, attention maps are generated which allows for
improved interpretability of our model. Differing from ac-
tion recognition methods that employ class co-occurrence
[30], our approach does not require a ground-truth action
co-occurrence matrix, but rather learns action dependencies
from the training data.

To better understand how our approach models ac-
tion dependencies, we present novel metrics for evaluat-
ing temporal action localization methods. Whereas pre-
vious multi-label evaluation methods, like mean average
precision (mAP) and F1-score, tend to evaluate per-frame
class performance independently, our proposed action-
conditional precision and recall metrics explicitly measure
how well pair-wise class/action dependencies are modeled
both within a time-step and through different time-steps.
Our proposed metrics are general - they can be applied to
both images and videos by measuring performance on both
c o-occurrence and temporal action dependencies.

Our main contributions include the following:

- We propose multi-label performance metrics to mea-
sure a method’s ability to model class co-occurrence
 across time-steps as well as within a time-step.
- We evaluate the proposed approach on two large scale
publicly available multi-label action datasets, outper-
forming existing state-of-the-art methods.

2. Related Work

In recent years, temporal action localization research
has received a lot of interest. In general, approaches for
temporal action localization are broadly classified into top-
down, bottom-up, and end-to-end. Top-down approaches
[5, 12, 54, 4], start with candidate proposals and refine
them to achieve the final temporal boundaries. These
approaches perform well, but are often slow and suffer from
over-generated proposals and rigid boundaries. Bottom-up
approaches [24, 22, 26] start with frame-level or clip-level
predictions for each action class and combine the individ-
ual scores to generate the final temporal boundaries. End-
to-end approaches [52, 23, 3] integrate proposal generation
and classification steps. These approaches are proposed to
solve temporal action localization with non-overlapping in-
stances and do not consider the relationships between action
classes.

Multi-label classification has been studied in both im-
ages [42, 15, 10, 11] and videos [46, 18, 31]. In the im-
age domain, it has been shown that leveraging relation-
ships between classes help improve classifier performance.
Some works [10, 21, 20, 9, 53] use probabilistic graph-
ical models to incorporate label relationships by formu-
ating this task as a structural inference problem. Others
[42, 25, 17, 43, 49] use spatial attention with recurrent neu-
nal networks to model the label co-occurrence. In [50, 44, 1]
image features and label domain data are projected to a
common latent space to learn the label correlations.

Videos introduce additional temporal relationships be-
tween labels which are crucial for multi-label temporal ac-
tion localization. Most previous approaches [13, 7, 28, 29,
33] for multi-label temporal action localization neither con-
sider the label co-occurrence nor the temporal relationships
between the labels. Recently, some works have explicit-
ly modeled temporal relationships between action labels
[35, 32]. The idea of learning a differentiable grammar to
model high-level temporal structure and relationships be-
tween multiple action classes was introduced in [32] for the
first time. In [35], a framework is presented to learn tem-
poral ordering between atomic actions by using regular ex-
pressions to express the temporal composition of atomic ac-
tions. Xu et al. [47] use graph convolutions to incorporate
semantic context into features by considering each time-
step (video snippet) as a node in a graph and learning rela-
tionships between different nodes. In contrast, our method
learns relationships between action classes both with-in and across time-steps using an attention mechanism. To the best of our knowledge, no existing works explicitly model both the co-occurrence and temporal action dependencies.

3. Approach

In this section, we first present the formulation of the multi-label temporal action localization problem. Then, we describe our proposed network. It consists of three main parts: (i) class-level feature extraction, (ii) feature refinement by using our MLAD layer which models both types of action dependencies, and (iii) a classification step to transform the refined features into class probabilities. The network architecture is depicted in Figure 2.

Problem Formulation

The problem of multi-label temporal action localization involves classifying all activities occurring throughout a video at each time-step. Formally, in a feature sequence of length T, each time-step $t = 1,...,T$ contains a ground-truth action label $y_{t,c} \in \{0,1\}$, where $c = 1,...,C$ is the action class. Given a feature vector of length F, $x_t \in \mathbb{R}^F$, for each time-step, an activity detection network predicts class probabilities $\hat{y}_{t,c} \in [0,1]$.

Class-level Feature Extraction

The input to our network is a series of feature vectors x_t. Since these features contain global representations (either frame-level or video-clip level, when obtained from 2D-CNN encoders and 3D-CNN encoders, respectively), we convert them to class-level representations. This nonlinear transformation is as follows:

$$f_{t,c} = \text{ReLU} \left(W_c^T x_t + b_c \right),$$

where W_c and b_c are learned weights for each class c. These H-dimensional vectors contain information pertinent to a given action at each time-step.

3.1. MLAD Layer

We propose a layer that can use these class-level features and model the relationships between the various action classes across time. One approach would be to use a fully-connected graph-based [10] or attention-based [48] network to learn the relationships between the feature vectors. This, however, would lead to $CT \times CT$ connections, which would be extremely inefficient when either the number of classes, C, or the number of time-steps, T, becomes large. Instead, we propose an efficient attention-based Multi-label Action Dependency (MLAD) layer which decomposes this operation into $C \times C$ and $T \times T$ sets of connections. The MLAD layer contains two branches - the Co-occurrence Dependency Branch (CB) and Temporal Dependency Branch (TB) - which model their corresponding action dependencies and refine the input class-level features. Refer to Figure 3 for the architecture of the MLAD layer.

Co-occurrence Dependency Branch (CB)

The CB models the relationships between actions within a given time-step. For each time-step, a self-attention operation [41] is performed across all classes. At each time step, t, input features generate a set of query, key, and value tensors (Q_t, K_t, V_t), each with dimension $\mathbb{R}^{C \times H}$. Then, a $C \times C$ attention matrix, $A(t)$, is obtained as follows:

$$A(t) = \text{softmax} \left(\frac{Q_t K_t^T}{\sqrt{H}} \right).$$

This attention matrix contains the relevance of each class for the classification of another class. For example, $A_{ij}^{(t)}$ denotes the relevance of class j in the classification of class i at time-step t; if these two classes co-occur within the same time-step often, then $A_{ij}^{(t)}$ should be large, otherwise, it will have a value close to 0. With this attention matrix, we obtain a refined set of class-level features that take into account the presence (or absence) of other classes within the time-step as follows:

$$f_{t,c}^r = FF(A(t)V_t).$$

where, FF is the Feed-Forward block containing two fully-connected layers along with dropout and normalization layers.

Temporal Dependency Branch (TB)

The TB models actions’ temporal dependencies. For each class, c, a new set of query, key, and value tensors (Q_c, K_c, V_c) are created with dimension $\mathbb{R}^{T \times H}$. The self-attention operation is performed across time:

$$A^{(c)} = \text{softmax} \left(\frac{Q_c K_c^T}{\sqrt{H}} \right).$$

Here, $A^{(c)}$ is a $T \times T$ attention matrix, where $A_{kn}^{(c)}$ denotes the importance of time-step n in the classification of the given class, c, at time-step k. The refined features are obtained as follows:

$$f_{t,c}^{r'} = FF(A^{(c)}V_c).$$

This branch incorporates information from all time-steps, producing more temporally coherent features and predictions. When the TB is used in conjunction with the CB, the MLAD layer can model both types of action dependencies.

Merging Branches and Classification

We merge the different sets of refined features ($f_{t,c}^r$ and $f_{t,c}^{r'}$) to obtain a combined output representation. The trivial approaches for merging would be element-wise summation or concatenation followed by an MLP to reduce dimensionality. We propose to learn the amount of information which is used from
Figure 2. Architecture of our proposed approach. Input to our model is a sequence of features \((T \times F)\), extracted using a pre-trained backbone. Our proposed architecture process these features in three steps. First, it learns class-specific features \((T \times H)\) for each class \(C\) (shown in block (i)). Second, it refines these class-specific features using one or more of the attention-based Multi-Label Action Dependency (MLAD) layers (shown in block (ii)). Third, it classifies the features using individual classification layers for each class, and output class probabilities for each time step \((T \times C)\) (shown in block (iii)).

Figure 3. MLAD Layer. Given class-specific features \((C \times H)\) for each time-step \(T\), this layer refines the features by modeling action dependencies with attention. The upper Temporal Dependency Branch (TB) models dependencies across time-steps (temporal dependencies) for each class and the lower Co-occurrence Dependency Branch (CB) models dependencies between classes within each time-step (co-occurrence dependencies).

Each module; the module learns a value, \(\alpha \in [0, 1]\), that is used to merge the outputs to compute combined features, \(g_{t,c}\), as follows:

\[
g_{t,c} = \alpha f'_{t,c} + (1 - \alpha) f''_{t,c}. \tag{6}
\]

We find that the use of the learned \(\alpha\) term leads to improvements in performance when compared to element-wise averaging. The improved class-level feature representation, \(g_{t,c}\), is either passed as an input to additional MLAD layers or used to produce a final classification output. This is performed by the transformation

\[
\hat{y}_{t,c} = \sigma \left(W_{c}^T g_{t,c} + b_{c}\right), \tag{7}
\]

where \(W_{c} \in \mathbb{R}^{d_{c} \times 1}\) and \(b_{c} \in \mathbb{R}\) are learned weights and \(\sigma\) is the logistic sigmoid function.

4. Action Dependency Metrics

The problem of multi-label temporal action localization consists of predicting the action, or actions, occurring at each time-step of a video. The standard metric for evaluating temporal action localization, \(f\text{-}mAP\), treats each time-step as an individual sample, measures the performance of each class independently, and averages their scores; it does not explicitly measure if models learn the relationships between these classes. This issue is not unique to \(f\text{-}mAP\). Other multi-label classification metrics \([19, 40, 36, 45]\) do not consider the relationships between different classes or time-steps, which makes them unsuitable to evaluate how well action dependencies are modeled. To this end, we propose new action localization metrics that measure a method’s ability to model both co-occurrence dependencies and temporal dependencies.

For a given video, \(k\), there exist binary ground-truth labels \(y_{t,c}^{(k)} \in \{0, 1\}\), where \(t\) is the time-step and \(c\) is the class. The network predicts class probabilities at each time-step, on which a threshold is applied to obtain binary predicted labels, \(\hat{y}_{t,c}^{(k)} \in [0, 1]\). Two standard metrics for multi-label classification are per-class precision and per-class recall, which are defined as:

\[
\text{Precision}(c) = \frac{N_{\text{correct}}(c)}{N_{\text{predict}}(c)}, \quad \text{Recall}(c) = \frac{N_{\text{correct}}(c)}{N_{\text{gt}}(c)}. \tag{8}
\]

Here, \(N_{\text{correct}}(c) = \sum_{k,t} [y_{t,c}^{(k)} = \hat{y}_{t,c}^{(k)} = 1]\) are the number of correct predictions for class \(c\), \(N_{\text{predict}}(c) = \sum_{k,t} [\hat{y}_{t,c}^{(k)} = 1]\) are the total number of predictions for class \(c\), \(N_{\text{gt}}(c) = \sum_{k,t} [y_{t,c}^{(k)} = 1]\) are the total number of time-steps containing class \(c\), and \(\mathbb{1}\) is the indicator function. These metrics measure a model’s performance on indi-
vidual classes, but they do not take into account the relationships and dependencies between these classes. We propose action-conditional precision and recall to solve this issue.

We first deal with the co-occurrence relationship, where two actions occur within the same time-step. For an action class c_i, we measure its precision and recall when another action, c_j, is present within the same time-step. The action-conditional precision and recall of c_i, given c_j, are

\[
\text{Precision}(c_i|c_j) = \frac{N_{\text{correct}}(c_i|c_j)}{N_{\text{predict}}(c_i|c_j)}, \quad \text{and}
\]

\[
\text{Recall}(c_i|c_j) = \frac{N_{\text{correct}}(c_i|c_j)}{N_{\text{gt}}(c_i|c_j)}. \quad (9)
\]

Here, the components are defined as

\[
N_{\text{correct}}(c_i|c_j) = \sum_{k,t} 1[y_{t,c_i}^{(k)} = \hat{y}_{t,c_i}^{(k)} = 1]\mathbb{I}[y_{t,c_j}^{(k)} = 1],
\]

\[
N_{\text{predict}}(c_i|c_j) = \sum_{k,t} 1[y_{t,c_i}^{(k)} = 1]\mathbb{I}[y_{t,c_j}^{(k)} = 1], \quad \text{and}
\]

\[
N_{\text{gt}}(c_i|c_j) = \sum_{k,t} 1[y_{t,c_i}^{(k)} = 1]\mathbb{I}[y_{t,c_j}^{(k)} = 1]. \quad (10)
\]

These metrics, measure the precision and recall of an action class c_i when c_j is present within the given time-step. Note that these metrics are not symmetric, and it may be the case that $\text{Precision}(c_i|c_j) \neq \text{Precision}(c_j|c_i)$ and $\text{Recall}(c_i|c_j) \neq \text{Recall}(c_j|c_i)$.

These metrics measure co-occurrence within a time-step. We extend this to measure temporal dependencies between different actions, which follow each other within some temporal window τ. We present metrics, which measure the precision and recall of action c_i, given that action c_j was present within the last τ time-steps and c_j is not present within the current time-step (this ensures that it measures only temporal dependencies and not co-occurrence dependencies). At time-step t, this holds when the following condition is true:

\[
y_{t,c_j}^{(k)} = 0 \land \exists y_{t^*,c_j}^{(k)} = 1, \quad t^* \in [t-\tau, t). \quad (11)
\]

Therefore, the action-conditional precision and recall, denoted $\text{Precision}(c_i|c_j, \tau)$ and $\text{Recall}(c_i|c_j, \tau)$, are computed with the following components:

\[
N_{\text{correct}}(c_i|c_j, \tau) = \sum_{k,t} 1[y_{t,c_i}^{(k)} = \hat{y}_{t,c_i}^{(k)} = 1]\mathbb{I}[\chi],
\]

\[
N_{\text{predict}}(c_i|c_j, \tau) = \sum_{k,t} 1[\hat{y}_{t,c_i}^{(k)} = 1]\mathbb{I}[\chi], \quad \text{and}
\]

\[
N_{\text{gt}}(c_i|c_j, \tau) = \sum_{k,t} 1[y_{t,c_i}^{(k)} = 1]\mathbb{I}[\chi]. \quad (12)
\]

Here, χ is the condition in equation 11. For ease of notation, we use $\tau = 0$ to denote the action-conditional metrics within a time-step (equation 9), such that $\text{Precision}(c_i|c_j, \tau = 0) = \text{Precision}(c_j|c_i)$ and $\text{Recall}(c_i|c_j, \tau = 0) = \text{Recall}(c_j|c_i)$.

Our proposed action-conditional metrics can be used to measure the co-occurrence dependencies and temporal dependencies between any two actions. Since some actions never co-occur or follow each other, the overall metric is computed by averaging all action pairs (c_i, c_j), $i \neq j$, such that $N_{\text{gt}}(c_i|c_j, \tau) > 0$. In addition, more complex performance metrics like F1-score (the harmonic mean between precision and recall) and mAP (the area under the precision-recall curve) can also be computed using our action-conditional precision and recall metrics.

5. Experimental Evaluations

5.1. Experimental Setup

Datasets We conduct experiments on two widely used multi-label action localization datasets: MultiTHUMOS [51] and Charades [39]. The MultiTHUMOS dataset is an extended version of THUMOS’14 [16] dataset, containing dense, multi-label frame-level action annotations for 65 classes across the 413 sports videos from YouTube. We use the standard train/test split with 200 videos for training and 213 for testing. MultiTHUMOS contains up to 25 action labels for each video, with an average of 10.5 activity instances per video and 1.5 labels per frame. This is in contrast to other activity detection datasets such as ActivityNet [6] and HACS [55], which only have one activity per time-step. Charades [39] is a large dataset with 9848 videos of daily indoor activities, collected through Amazon Mechanical Turk. The dataset consists of 66,500 temporal annotations for 157 action classes. Contrary to MultiTHUMOS, the activities tend to be performed in the home. Each video in the dataset contains an average of 6.8 activity instances.

Implementation Details In our experiments we use RGB and Optical Flow features extracted from two-stream I3D backbone pre-trained on Kinetics-400 dataset unless otherwise stated. A 1024 dimensional feature vector is extracted per stream from the final convolutional layer of an I3D [8] network at 3 feature vectors per second from 24fps videos. Each feature vector corresponds to 8 frames or 0.33 seconds. The input sequence length is set to $T = 128$ on MultiTHUMOS, and $T = 64$ on Charades. For both datasets, our network uses $L = 5$ MLAD layers (See section 5.3 for discussion on other values of T and L). The dimension of the class-level feature vector, H, is set to 128 in all our experiments. During training, we classify and compute loss on both the initial class-level features and the features from the final MLAD layer. We train our models using Adam optimizer with an initial learning rate of 1e-4. All our models are trained on a single 32GB NVIDIA Tesla V100 GPU and implemented in PyTorch deep-learning framework.
Baselines
We compare our method with several baselines. The first is a linear layer which classifies individual time-steps based on the features extracted from a pre-trained I3D network (denoted I3D Baseline). A second baseline which extracts class-level features (as in equation 1) and classifies these features (as in equation 7) is also used (denoted CF Baseline). In addition, we compare with recent multi-label action localization methods Super-events (SE) [34], Temporal Gaussian Mixture (TGM) Layers [33], TGMs + SE [33], and TGMs + Differentiable Grammars (DG) [32].

Metrics
To compare with previous temporal action localization works, we use the standard evaluation protocol of computing per-frame mean average precision (f-mAP). We also present results on other multi-label metrics: Hamming Loss (HL), Zero One Loss (ZL), Coverage Loss (CL), Jaccard Score (JS), and Label Ranking Average Precision (LRAP), as well as our proposed action-conditional metrics: precision (P_{AC}), recall (R_{AC}), f1-score ($F1_{AC}$), and mean average precision (mAP_{AC}).

5.2. Results
Our results on the MultiTHUMOS and Charades datasets are presented in Table 1. Our approach achieves 51.5% f-mAP and 23.7% f-mAP on MultiTHUMOS and Charades respectively. The effectiveness of our MLAD layer is best illustrated by the comparison with CF Baseline: with only 5 MLAD layers, the class-based features are refined, leading to a 9% improvement in f-mAP for both datasets.

Comparison with state-of-the-art
On MultiTHUMOS, our model outperforms the current state-of-the-art model, TGM + Differentiable Grammars, by 3.3%; on Charades, we achieve a 0.8% improvement in f-mAP. Although the absolute improvement is not as large as MultiTHUMOS (since it is a more difficult dataset with more action classes), the improvement is comparable to previous performance advancements on the dataset (e.g., 0.6% improvement for TGM + DG over TGMs + SE).

Action-Conditional Metric Results
We present results using other existing multi-label metrics (HL, ZL, RL, CL, JS, LRAP) alongside our proposed metrics (conditional precision, recall, f1-score, and mAP) on the MultiTHUMOS dataset in Table 2. For the time-conditional metrics, we select $\tau = 20$; results with other values of τ are presented in the Supplementary Materials. Our method achieves higher performance on all action-conditional metrics since it models different action dependencies within a video, both within a time-step ($\tau = 0$) and throughout time ($\tau > 0$). Of the 1322 action pairs that co-occur within a time-step in the test set, our method improves the average precision of 961 pairs when compared to the I3D baseline.

By analyzing specific action pairs, one can better understand how various approaches model the different action dependencies. Here, we examine the dependencies described in Figure 1. To evaluate how well the method models the co-occurrence dependency between actions “Basketball Dribble” and “Run”, one can compute the average precision over that pair: $AP(c_i = \text{BasketballDribble}|c_j = \text{Run}, \tau = 0)$. The TGM approach achieves a minor improvement over the I3D baseline (47.26% vs 45.60%), while our approach better models this relationship with an average precision of 58.85%. A similar improvement is seen for temporal dependencies. To evaluate the relationship “Fall follows Jump”, we compute $AP(c_i = \text{Fall}|c_j = \text{Jump}, \tau = 20)$, and find that our method achieves a score of 78.12% compared to the TGM’s 72.27%.

5.3. Ablations
We evaluate the various design decisions for our method as well as its components.

Number of MLAD Layers
Since our proposed MLAD layer can be stacked to continually refine input features, we test how performance changes as the number of MLAD layers increases. We show in Table 3 that increasing the number of layers tends to improve results on both MultiTHUMOS and Charades. However, this improvement has diminishing gains as the depth increases: the change from 3 to 5 layers leads to a smaller improvement (1.22% on MultiTHUMOS) than the change from 1 to 3 layers (1.85%). An increase to $L = 7$ leads to no noticeable improvement, therefore all reported results have a depth of $L = 5$.

Effect of Feature Sequence Length
Since our approach performs computations on a feature sequence of length T, we evaluate how the sequence length affects our performance. We present two experimental setups: 1) both the training and evaluation lengths are fixed, and 2) the training length is varied, $T \in \{i \times 16 \mid i \in \{1,...,8\}\}$, with a fixed evaluation length. We present the results of both in 4. We find that when the training length is fixed, the performance peaks when $T = 96$ at 51.31% mAP. However, when the training length is varied in experiment setup 2, we achieve the best performance with $T = 128$. This varying of se-
6. Discussion and Analysis

In this section, we analyze our trained model’s predictions and the learned attention maps from MLAD layers.

Effect of CB and TB Since both branches of the MLAD layer are meant to model the different action dependencies within a video, we run an ablation by removing each of these branches and present the results in Table 5. We find that each branch leads to improvement over classifying with the original class-level features, but that best performance is achieved when both are used.

Failure Cases When compared to previous approaches, our network tends to under-perform on the “Walk” and “Sit” actions on the MultiTHUMOS dataset. We find that these actions tend to occur in the background (e.g. by a referee or audience members at a sporting event) and frequently co-occur with many different foreground actions. Since these background actions are not directly dependent on those in the foreground, our method attempts to model relationships that do not exist, leading to poor performance. This suggests that the modeling of individual actors would be greatly beneficial for learning the various action dependencies within a video. We believe that this would be a promising direction for future work.
Figure 5. Visualization of 10×10 subsets of the CB attention maps from MLAD layers 1, 3, and 5 obtained by averaging the maps over time-steps where action “Throw Discus” (top) and “Clean and Jerk” (bottom) are present. Columns corresponding to classes that are related to the main action (those in green) tend to be active, whereas unrelated classes (in red) tend to have low activation.

Figure 6. Visualization of the $T \times T$ maps for the class “Close Up Talk To Camera” from a sample sequence. A noticeable checker-board pattern is present: Time-steps, where the action is present, tend to focus on other time-steps where it is present; and time-steps, where the action is absent, tend to focus on other time-steps where it is absent. This behavior is common across all actions. Furthermore, we find that different MLAD layers attend to different parts of an action; for example, in layer 5 the attention map is active at the action boundaries for the “Close Up Talk To Camera” action.

Interpretability of MLAD Layers One advantage of our approach over previous temporal action localization methods is that the network architecture (specifically the MLAD layers) allows for more interpretable results. Since the MLAD Layers consist of two attention-based branches - the Co-occurrence Dependency Branch (CB) and the Temporal Dependency Branch (TB) - we can analyze their attention maps to better understand how the different action dependencies are modeled. These analyses are done on the MultiTHUMOS dataset where there are 65 action classes ($C = 65$) and a sequence length of 128 ($T = 128$) is used.

We first analyze attention maps in the CB. Figure 5 contains 10×10 subsets of the $C \times C$ attention maps from different MLAD layers, which are obtained by averaging over all time-steps where a specific action is present (“Throw Discus” on the top and “Clean and Jerk” on the bottom). We find that this model successfully models the co-occurrence dependencies since the actions which are related to the present action (e.g. “Throw”, “Discus Wind-Up”, and “Discus Release”) tend to be active, whereas unrelated actions (e.g. basketball and volleyball actions) tend to have low activation. We also find that the CB focuses on actions, like “Run” and “Jump”, which are most prevalent in the training set - this is likely because these actions often co-occur with many different actions, so their presence (or absence) is important in determining the existence of other less common actions.

Next, we present the attention maps from the TB in Figure 6. We visualize the $T \times T$ maps for the class “Close Up Talk To Camera” from a sample sequence. A noticeable checker-board pattern is present: Time-steps, where the action is present, tend to focus on other time-steps where it is present; while time-steps, where the action is absent, tend to focus on other time-steps where it is absent. This behavior is common across all actions. Furthermore, we find that different MLAD layers attend to different parts of an action; for example, in layer 5 the attention map is active at the action boundaries for the “Close Up Talk To Camera” action. We provide attention maps for all MLAD layers, as well as more examples, in the supplement.

7. Conclusion

In this work, we propose an attention-based network architecture to learn action dependencies in videos, for solving the multi-label temporal action localization task. Our proposed MLAD layer consisting of two branches: The co-occurrence Dependency Branch and the Temporal Dependency Branch, which use attention to model dependencies between actions that occur within the same time-step, and those actions which precede/follow each other, respectively. As the existing evaluation metrics for multi-label temporal localization do not explicitly consider action dependencies, we propose a novel evaluation metric. Our method outperforms the current state-of-the-art on existing multi-label classification metrics as well as our proposed metric.

Acknowledgments This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. D17PC00345. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes not withstanding any copyright annotation thereon.

1 Additional visualizations which illustrate this behavior can be found in the Supplementary Material.
References

[3] Shyamal Buch, Victor Escorcia, Bernard Ghanem, Li Fei-Fei, and Juan Carlos Niebles. End-to-end, single-stream temporal action detection in untrimmed videos. 2019. 2

[21] Xin Li, Feipeng Zhao, and Yuhong Guo. Multi-label image classification with a probabilistic label enhancement model. In UAI, volume 1, pages 1–10, 2014. 2

