Residual Network (ResNet)

• Before ResNet:
 • Adding more layer to deep CNN results in degradation of performance
 • Is this degradation due to overfitting?
 • No ...
 • Because training error went up – if it has been overfitting, training error would have gone down
 • If not overfitting, should adding more layers cause degradation by itself?
 • No ...
 • Imagine a shallow network, you can add more layers that are identity mappings, so the resulting deeper network should minimally have the same performance!!
What does this tell us?

• Trying to learn even an identity mapping as network gets deeper is not trivial

• So, what's the solution?
 • Say $\mathcal{H}(x)$ is the desired mapping
 • We learn $\mathcal{F}(x) := \mathcal{H}(x) - x$ instead
 • The original desired mapping is now $\mathcal{F}(x) + x$
 • This means that if we want to learn identity mappings, we just need to learn $x = 0$, which is easier than learning an identity mapping as mentioned
Residual Block

\[y = \mathcal{F}(x, \{W_i\}) + x. \]

\[\mathcal{F} = W_2 \sigma(W_1 x) \]

- Shortcut connections
- Element-wise addition
- 2-3 layers work best per block

Figure 2. Residual learning: a building block.
3.4. Implementation

Our implementation for ImageNet follows the practice in [21, 41]. The image is resized with its shorter side randomly sampled in [256, 480] for scale augmentation [41]. A 224×224 crop is randomly sampled from an image or its horizontal flip, with the per-pixel mean subtracted [21]. The standard color augmentation in [21] is used. We adopt batch normalization (BN) [16] right after each convolution and before activation, following [16]. We initialize the weights as in [13] and train all plain/residual nets from scratch. We use SGD with a mini-batch size of 256. The learning rate starts from 0.1 and is divided by 10 when the error plateaus, and the models are trained for up to 60 × 10^4 iterations. We use a weight decay of 0.0001 and a momentum of 0.9. We do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard 10-crop testing [21]. For best results, we adopt the fully-convolutional form as in [41, 13], and average the scores at multiple scales (images are resized such that the shorter side is in \{224, 256, 384, 480, 640\}).
Assignments (due 8/31)

• Replicate results in Table 2, 3, 4, 5, 6, 7, 8 – 40%
 • No training involved!!
 • Take existing models (many githubs and models on internet) to run INFEERENCE to replicate results

• Report and code zip (10%)
 • Errors and obstacles faced running the model
 • Must have conda requirement.txt, cli commands to generate each table above (random checks will be perform to verify)

• Video of live demo (20%)
 • The video should comprise of visual outputs (e.g., a text "cat" overlay on the image being classified that has a cat in it)

• New ideas/insights (30%)