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Motivation

Can we find a single small image perturbation that fools a state-of-the-art deep
neural network classifier on all natural images?

YES!

Universal perturbation vectors exist!

Adding such a perturbation to naturalimages can fool the deep neural network to
misclassify images with high probability.
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These perturbations are:
= Universal / Image-agnostic
= Quasi-imperceptible
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Contributions

= Existence of universal image-agnostic perturbations for state-of-the-art deep
neural networks.

= Algorithm for finding universal perturbations.

= Proof for the generalization property across images. } Doubly Universal

= Proof for generalization across deep neural networks.

= Analysis of the high vulnerability of deep neural networks to universal

perturbations
=  Geometric correlation between different parts of the decision boundary.




Universal Perturbations

Seek vector such that

k(z + v) # k(x) for “most” z ~ L.

K = distribution of images
I- = classification function
v = perturbed vector




Conditions

= Vector should satisfy:

L [lof[ <&,
2. P (é(x+-@.:) #i‘:(m)) > 1.
Tl

u 6 Controls magnitude of perturbationvector

= A Quantifies desired fooling rate




Algorithm
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: input: Data points X, classifier ;}, desired ¢, norm of

the perturbation &, desired accuracy on perturbed sam-
ples 6.
output: Universal perturbation vector v.
Initialize v < 0.
while Err(X,) <1 —-4ddo
for each datapoint z; € X do
if k(z; + v) = k(x;) then
Compute the minimal perturbation that
sends x; + v to the decision boundary:

Av; < argmin ||r||2 s.t. k(z; +v +7) # k().
;.
Update the perturbation:
v 4 Ppe(v + Av;).

end if
end for
end while




Projecting Universal Perturbation

Projection operator
Ppe(v) = arg H}.irﬂ v — v'||2 subject to ||v”||,, < &

Then update vector
v & Ppe(v + Av;)

Perform iterations until

1
]:IT( ) "oom Z k{.r_ +v)#k(z;) > 1 - 0
= Where m is the number of datapomts to use from entire dataset

m can be small and still compute an effective universal perturbation




Universal Perturbation Visualization

% . L@? = classificationregion
- A”U,,; = minimal perturbationto move point

outside of gg@

= 7)) =universal perturbation vector




Universal Perturbations for Deep Nets

= Experimentdetails:
= Estimated universal perturbations for following neural networks:
= (CaffeNet, VGG-F, VGG-16, VGG-19, GooglLeNet, ResNet-152
= ILSVRC 2012 validation set
= 50,000 images
= set X contains 10,000 images (i.e., in average 10 images per class)
= Results are reported for:
" p=2andp =-co, where { =2000 and § = 10 respectively.




Experimental Results

Results reported on:
= set X (used to compute the universal perturbation)

= validation set (not used to compute the universal perturbation)

CaffeNet [V] | VGG-F [5] | VGG-16[15] | VGG-19[15] | GoogleNet [1Y] | ResNet-152 [ 7]
X 83.4% 85.0% 00.7 % 86.9% 82.00 807
Val. 83.6% 87.0% 00.3% 84.5% 82.0% 88.5%
X 03.1% 03.8% T8.5% T7.8% 80.8% 85.4%
| Val 03.3% 03.7% T8.3% T7.8% 78.9% 84.0%




Proof of Quasi-Imperceptibility

= Visual examples using the GooglLeNet architecture
= Images belong to:

= ILSVRC 2012 Validation Set

= Mobile Phone Camera
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Visualization

Visualization of universal perturbations
for different networks.

These images are generated with p = oo
and ¢ = 10.
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Visualization

= Universal perturbations are not unique.

= Diverse universal perturbations for the GooglLeNet architecture.

= Generated using differentrandom shufflings of the set X.

= Normalized inner products for any pair of universal perturbations does not exceed
0.1.




Effect of size of X on Quality

500 1000 2000 4000

Mumber of images in X
&
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= |f X = 500 images, more than 30% of the
images can be fooled.

= This result is significant because the number of
classes in ImageNet are 1000.

= A large set of unseen images can be fooled,
even when set X contains less than one image
per class!
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Cross-Model Universality

= Universal perturbations computed for the VGG-19 network have a fooling ratio
above 53% for all other tested architectures.

= For some architectures, the universal perturbations generalize very well across
other architectures.

VGG-F | CaffeNet | GoogleNet | VGG-16 | VGG-19 | ResNet-152
VGG-F 93.7% | 71.8% | 48.4% N1% | 921% | 414G
CaffeNet | 74.0% | 93.30c | 41.7% 300% | 30.0% | 48.0%
GoogleNet | 46.2% | 438% | 18.9% 302% | 30.8% | 45.5%
VGG-16 | 63.4% | 55.8% | 56.50 7830 | 13.1% | 63.4%
VGG-10 | 64.0% | 57.2% | 53.6% 735% | 77.8% | 58.00
ResNet-152 | 46.3% | 46.3% | 50.50 | 47.0% | 455% | 84.0%




Visualization of the effect of Universal

Perturbations

A directed graph G = (V,E)

= vertices = labels

= directed edges e = (i = j) images of classi are fooled into label j

Union of disjoint
components.

Connected Components.
Existence of Dominant
Labels.
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Fine-tuning with universal perturbations.

= Fine-tuned the VGG-F architecture by modifying training set.

= For each training point, a universal perturbation is added with probability 0.5.

= Pre-compute a pool of 10 differentuniversal perturbations and picked randomly
from this pool.

= Trained 5 extra epochs on the modified training set.




Attacking the Fine-tuned Network

= Computed a new universal perturbation for the fine-tuned network (with p = ccand
¢ =10).
= After 5 extra epochs, the fooling rate on the validation set is 76.2%.,
= Originally it was 93.7%.
= Repeated the procedure
= Obtained a new fooling ratio of 80.0%.
= The repetition of this procedure for a fixed number of times does not yield any
improvementover 76.2%.
"  Fine-tuning leads to a mild improvement in the robustness, it does not fullyimmune

against universal perturbations.
&
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Perturbation Comparison

= Universal perturbation reaches high
fooling rate quickly

Fooling Rate 85% 10%
= LIniversal
= Random
——Adv. pert. (DF) | |
Sam o F6S) = Suggests universal perturbation exploits
—— ImageNet bias | 7]

geometric correlations of classifiers

. . . . decision boundary
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Random vs Universal Perturbation

= Norm of random perturbation:
O(Vd|r|2)
= d = dimension of input space
= | 7|2 = distance between data point and boundary
= For ImageNet classification task:

Vd||rlls = 2 x 10
= Where universal perturbation equals just 2000




Capturing Decision Boundary Geometry

= For each image in validation set compute:

r(x) = argmin, ||rls st k(z + ) # k()
= To quantify correlation between differentregions:

N — r(zy) r(xn)
lr(@)ll2 [lr(zn)ll2




Capturing Decision Boundary Correlations
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= The singular values of matrix N
are computed

Random
= = Normal vectors
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= The singular values of columns
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= Singular values from random
vectors decay slowly

-
T

o
4
T

o




Low Dimension Subspace Hypothesis

= S = low dimension subspace
= I; =datapoint
» T°; = adversarial perturbation

u L@g = decision boundary




Low Dimension Subspace Verification

=  Random vector of norm 2000 belonging to subspaceSS.
= Fooling ratio in well-sought subspace computed at 38%.
=  Comparedto 10% when doing random perturbations.

=  This also helps explain why the universal perturbation generalizes well.




Conclusion

= Showed the existence of small universal perturbations that can fool state-of-the-art
classifiers on natural images.
= Proposedan iterative algorithm to generate universal perturbations.
= Highlighted several properties of universal perturbations.
= Image-agnostic
= Network-agnostic
= Explained the existence of universal perturbations with the correlation between
differentregions of the decision boundary.
= Provided insights on the geometry of the decision boundaries of deep neural
networks.

&
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For

= This algorithm is able to generate a universal perturbation with a small sample
of the data.

= Finding the subspace that allows the universal perturbation to be so effective.

* Finding geometric correlations between different parts of the decision
boundary.

= The universal perturbationis image-agnostic and network-agnostic.




Against

= Used only a single dataset of natural images ImageNet for all experiments.
= The proposed method is expensive as it’s iterative.

= Performed fine-tuning on just a single architecture VGG-F.

* Fine-tuning procedure helped improve the fooling rate to 76.2% only.

= Their hypothesis for dominant labels need to be investigated.




Thank You
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