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Motivation

Can we find a single small image perturbation that fools a state-of-the-art deep 
neural network classifier on all natural images?

YES!

Universal perturbation vectors exist!

Adding such a perturbation to natural images can fool the deep neural network to 
misclassify images with high probability.



Definition

These perturbations are:
▪ Universal / Image-agnostic
▪ Quasi-imperceptible



Contributions

▪ Existence of universal image-agnostic perturbations for state-of-the-art deep
neural networks.

▪ Algorithm for finding universal perturbations.
▪ Proof for the generalization property across images.
▪ Proof for generalization across deep neural networks.
▪ Analysis of the high vulnerability of deep neural networks to universal

perturbations
▪ Geometric correlation between differentparts of the decision boundary.

} Doubly Universal



Universal Perturbations

▪ Seek vector such that

▪ µ = distribution of images
▪ = classification function
▪ = perturbed vector



Conditions 

▪ Controls magnitude of perturbation vector

▪ Quantifies desired fooling rate

▪ Vector should satisfy:



Algorithm



Projecting Universal Perturbation

▪ Projection operator

▪ Then update vector

▪ Perform iterations until

▪ Where m is the number of datapoints to use from entire dataset

▪ m can be small and still compute an effective universal perturbation



Universal Perturbation Visualization

▪ = classification region

▪ = minimal perturbation to move point

outside of 

▪ = universal perturbation vector



Universal Perturbations for Deep Nets

▪ Experiment details:
▪ Estimated universal perturbations for following neural networks:

▪ CaffeNet, VGG-F, VGG-16, VGG-19, GoogLeNet, ResNet-152
▪ ILSVRC 2012  validation set 

▪ 50,000 images
▪ set X contains 10,000 images (i.e., in average 10 images per class)

▪ Results are reported for:
▪ p = 2 and p = ∞, where ξ = 2000 and ξ = 10 respectively.



Experimental Results

▪ Results reported on:
▪ set X (used to compute the universal perturbation)
▪ validation set (not used to compute the universal perturbation)



Proof of Quasi-Imperceptibility

▪ Visual examples using the GoogLeNet architecture
▪ Images belong to:

▪ ILSVRC 2012 Validation Set
▪ Mobile Phone Camera



Visualization

▪ Visualization of universal perturbations 
for different networks.

▪ These images are generated with p = ∞ 
and ξ = 10. 



Visualization

▪ Universal perturbations are not unique.
▪ Diverse universal perturbations for the GoogLeNet architecture.
▪ Generated using different random shufflings of the set X.
▪ Normalized inner products for any pair of universal perturbations does not exceed

0.1.



Effect of size of X on Quality

▪ If X = 500 images, more than 30% of the
images can be fooled.

▪ This result is significant because the number of
classes in ImageNet are 1000.

▪ A large set of unseen images can be fooled,
even when set X contains less than one image
per class!



Cross-Model Universality

▪ Universal perturbations computed for the VGG-19 network have a fooling ratio 
above 53% for all other tested architectures.

▪ For some architectures, the universal perturbations generalize very well across 
other architectures.



Visualization of the effect of Universal 
Perturbations

▪ A directed graph G = (V,E)
▪ vertices = labels
▪ directed edges e = (i → j) images of class i are fooled into label j

▪ Union of disjoint 
components.

▪ Connected Components.
▪ Existence of Dominant 

Labels.



Fine-tuning with universal perturbations.

▪ Fine-tuned the VGG-F architecture by modifying training set.
▪ For each training point, a universal perturbation is added with probability 0.5.
▪ Pre-compute a pool of 10 different universal perturbations and picked randomly 

from this pool. 
▪ Trained 5 extra epochs on the modified training set.



Attacking the Fine-tuned Network

▪ Computed a new universal perturbation for the fine-tuned network (with p = ∞and
ξ = 10).

▪ After 5 extra epochs, the fooling rate on the validation set is 76.2%.,
▪ Originally it was 93.7%.

▪ Repeated the procedure
▪ Obtained a new fooling ratio of 80.0%.

▪ The repetition of this procedure for a fixed number of times does not yield any
improvement over 76.2%.

▪ Fine-tuning leads to a mild improvement in the robustness, it does not fully immune
against universal perturbations.



Perturbation Comparison

▪ Universal perturbation reaches high 
fooling rate quickly

▪ Suggests universal perturbation exploits 
geometric correlations of classifiers 
decision boundary



Random vs Universal Perturbation

▪ Norm of random perturbation:

▪ = dimension of input space

▪ = distance between data point and boundary

▪ For ImageNet classification task:

▪ Where universal perturbation equals just 2000



Capturing Decision Boundary Geometry

▪ For each image in validation set compute:

▪ To quantify correlation between different regions:



Capturing Decision Boundary Correlations

▪ The singular values of matrix N
are computed

▪ The singular values of columns
sampled uniformly and randomly
from N are also computed

▪ Singular values from normal
vectors decay quickly

▪ Singular values from random
vectors decay slowly



Low Dimension Subspace Hypothesis

▪ = low dimension subspace

▪ = data point

▪ = adversarial perturbation

▪ = decision boundary



Low Dimension Subspace Verification

▪ Random vector of norm 2000 belonging to subspace S.

▪ Fooling ratio in well-sought subspace computed at 38%.

▪ Compared to 10% when doing random perturbations.

▪ This also helps explain why the universal perturbation generalizes well.



Conclusion

▪ Showed the existence of small universal perturbations that can fool state-of-the-art
classifiers on natural images.

▪ Proposed an iterative algorithm to generate universal perturbations.
▪ Highlighted several properties of universal perturbations.

▪ Image-agnostic
▪ Network-agnostic

▪ Explained the existence of universal perturbations with the correlation between
different regions of the decision boundary.

▪ Provided insights on the geometry of the decision boundaries of deep neural
networks.



For

▪ This algorithm is able to generate a universal perturbation with a small sample
of the data.

▪ Finding the subspace that allows the universal perturbation to be so effective.
▪ Finding geometric correlations between different parts of the decision

boundary.
▪ The universal perturbation is image-agnostic and network-agnostic.



Against

▪ Used only a single dataset of natural images ImageNet for all experiments.
▪ The proposed method is expensive as it’s iterative.
▪ Performed fine-tuning on just a single architecture VGG-F.
▪ Fine-tuning procedure helped improve the fooling rate to 76.2% only.
▪ Their hypothesis for dominant labels need to be investigated.
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