

About the paper

- Authors:
 - Seyed-Mohsen Moosavi-Dezfooli
 - Alhussein Fawzi
 - Omar Fawzi
 - Pascal Frossard
- It was published in CVPR 2017.
- It has 1172 Citations.
- Link:
 - "Deepfool: a simple and accurate method to fool deep neural networks,"

Outline

- Motivation
- Definition
- Contributions of the Paper
- Universal Perturbation
- Universal Perturbations for Deep Nets
 - Cross-model Universality
 - Visualization
 - Fine-tuning
- Conclusion
 - For
 - Against

Motivation

Can we find a *single* small image perturbation that fools a state-of-the-art deep neural network classifier on all natural images?

YES!

Universal perturbation vectors exist!

Adding such a perturbation to natural images can fool the deep neural network to misclassify images with high probability.

Definition

These perturbations are:

- Universal / Image-agnostic
- Quasi-imperceptible

Contributions

- Existence of universal image-agnostic perturbations for state-of-the-art deep neural networks.
- Algorithm for finding universal perturbations.
- Proof for the generalization property across images.
- **Doubly Universa**
- Proof for generalization across deep neural networks.
- Analysis of the high vulnerability of deep neural networks to universal perturbations
 - Geometric correlation between different parts of the decision boundary.

Universal Perturbations

Seek vector such that

$$\hat{k}(x+v) \neq \hat{k}(x)$$
 for "most" $x \sim \mu$.

- μ = distribution of images
- \hat{k} = classification function
- v = perturbed vector

Conditions

Vector should satisfy:

1.
$$||v||_p \leq \xi$$
,

2.
$$\mathbb{P}_{x \sim \mu} \left(\hat{k}(x+v) \neq \hat{k}(x) \right) \ge 1 - \delta.$$

- ξ Controls magnitude of perturbation vector
- δ Quantifies desired fooling rate

Algorithm

- 1: **input:** Data points X, classifier \hat{k} , desired ℓ_p norm of the perturbation ξ , desired accuracy on perturbed samples δ .
- 2: **output:** Universal perturbation vector v.
- 3: Initialize $v \leftarrow 0$.
- 4: **while** $Err(X_v) \leq 1 \delta \mathbf{do}$
- 5: **for** each datapoint $x_i \in X$ **do**
- 6: **if** $\hat{k}(x_i + v) = \hat{k}(x_i)$ **then**
- 7: Compute the *minimal* perturbation that sends $x_i + v$ to the decision boundary:

$$\Delta v_i \leftarrow \arg\min_r ||r||_2 \text{ s.t. } \hat{k}(x_i + v + r) \neq \hat{k}(x_i).$$

8: Update the perturbation:

$$v \leftarrow \mathcal{P}_{p,\xi}(v + \Delta v_i).$$

- 9: **end if**
- 10: end for
- 11: end while

Projecting Universal Perturbation

Projection operator

$$\mathcal{P}_{p,\xi}(v) = \arg\min_{v'} \|v - v'\|_2 \text{ subject to } \|v'\|_p \le \xi$$

Then update vector

$$v \leftarrow \mathcal{P}_{p,\xi}(v + \Delta v_i)$$

Perform iterations until

$$\operatorname{Err}(X_v) := \frac{1}{m} \sum_{i=1}^m 1_{\hat{k}(x_i+v) \neq \hat{k}(x_i)} \ge 1 - \delta$$

- Where m is the number of datapoints to use from entire dataset
- m can be small and still compute an effective universal perturbation

Universal Perturbation Visualization

- \mathcal{R}_i = classification region
- Δv_i = minimal perturbation to move point outside of \mathscr{R}_i
- $oldsymbol{v}$ = universal perturbation vector

Universal Perturbations for Deep Nets

- Experiment details:
 - Estimated universal perturbations for following neural networks:
 - CaffeNet, VGG-F, VGG-16, VGG-19, GoogLeNet, ResNet-152
 - ILSVRC 2012 validation set
 - 50,000 images
 - set X contains 10,000 images (i.e., in average 10 images per class)
 - Results are reported for:
 - p = 2 and p = ∞ , where ξ = 2000 and ξ = 10 respectively.

Experimental Results

- Results reported on:
 - set X (used to compute the universal perturbation)
 - validation set (not used to compute the universal perturbation)

			CaffeNet [9]	VGG-F [3]	VGG-16 [18]	VGG-19 [18]	GoogLeNet [19]	ResNet-152 [7]
	0	X	85.4%	85.9%	90.7%	86.9%	82.9%	89.7%
'	2	Val.	85.6%	87.0%	90.3%	84.5%	82.0%	88.5%
	ℓ_{∞}	X	93.1%	93.8%	78.5%	77.8%	80.8%	85.4%
		Val.	93.3%	93.7%	78.3%	77.8%	78.9%	84.0%

Proof of Quasi-Imperceptibility

- Visual examples using the GoogLeNet architecture
- Images belong to:
 - ILSVRC 2012 Validation Set
 - Mobile Phone Camera

Visualization

- Visualization of universal perturbations for different networks.
- These images are generated with $p = \infty$ and $\xi = 10$.

Visualization

- Universal perturbations are not unique.
- Diverse universal perturbations for the GoogLeNet architecture.
- Generated using different random shufflings of the set X.
- Normalized inner products for any pair of universal perturbations does not exceed
 0.1.

Effect of size of X on Quality

- If X = 500 images, more than 30% of the images can be fooled.
- This result is significant because the number of classes in ImageNet are 1000.
- A large set of unseen images can be fooled, even when set X contains less than one image per class!

Cross-Model Universality

- Universal perturbations computed for the VGG-19 network have a fooling ratio above 53% for all other tested architectures.
- For some architectures, the universal perturbations generalize very well across other architectures.

	VGG-F	CaffeNet	GoogLeNet	VGG-16	VGG-19	ResNet-152
VGG-F	93.7%	71.8%	48.4%	42.1%	42.1%	47.4 %
CaffeNet	74.0%	93.3%	47.7%	39.9%	39.9%	48.0%
GoogLeNet	46.2%	43.8%	78.9%	39.2%	39.8%	45.5%
VGG-16	63.4%	55.8%	56.5%	78.3%	73.1%	63.4%
VGG-19	64.0%	57.2%	53.6%	73.5%	77.8%	58.0%
ResNet-152	46.3%	46.3%	50.5%	47.0%	45.5%	84.0%

Visualization of the effect of Universal Perturbations

- A directed graph G = (V,E)
 - vertices = labels
 - directed edges e = (i → j) images of class i are fooled into label j

- Union of disjoint components.
- Connected Components.
- Existence of Dominant Labels.

Fine-tuning with universal perturbations.

- Fine-tuned the VGG-F architecture by modifying training set.
- For each training point, a universal perturbation is added with probability 0.5.
- Pre-compute a pool of 10 different universal perturbations and picked randomly from this pool.
- Trained 5 extra epochs on the modified training set.

Attacking the Fine-tuned Network

- Computed a new universal perturbation for the fine-tuned network (with p = ∞ and ξ = 10).
- After 5 extra epochs, the fooling rate on the validation set is 76.2%.,
 - Originally it was 93.7%.
- Repeated the procedure
 - Obtained a new fooling ratio of 80.0%.
- The repetition of this procedure for a fixed number of times does not yield any improvement over 76.2%.
- Fine-tuning leads to a mild improvement in the robustness, it does not fully immune against universal perturbations.

Perturbation Comparison

Universal perturbation reaches high fooling rate quickly

	Algorithm 1	Random Vectors
Fooling Rate	85%	10%

 Suggests universal perturbation exploits geometric correlations of classifiers decision boundary

Random vs Universal Perturbation

Norm of random perturbation:

$$\Theta(\sqrt{d}||r||_2)$$

- d = dimension of input space
- For ImageNet classification task:

$$\sqrt{d} ||r||_2 \approx 2 \times 10^4$$

Where universal perturbation equals just 2000

Capturing Decision Boundary Geometry

For each image in validation set compute:

$$r(x) = \operatorname{arg\,min}_r ||r||_2 \text{ s.t. } \hat{k}(x+r) \neq \hat{k}(x)$$

■ To quantify correlation between different regions:

$$N = \left[\frac{r(x_1)}{\|r(x_1)\|_2} \dots \frac{r(x_n)}{\|r(x_n)\|_2} \right]$$

Capturing Decision Boundary Correlations

- The singular values of matrix N are computed
- The singular values of columns sampled uniformly and randomly from N are also computed
- Singular values from normal vectors decay quickly
- Singular values from random vectors decay slowly

Low Dimension Subspace Hypothesis

- S = low dimension subspace
- x_i = data point
- r_i = adversarial perturbation
- \mathscr{B}_i = decision boundary

Low Dimension Subspace Verification

- Random vector of norm 2000 belonging to subspace S.
- Fooling ratio in well-sought subspace computed at 38%.
- Compared to 10% when doing random perturbations.
- This also helps explain why the universal perturbation generalizes well.

Conclusion

- Showed the existence of small universal perturbations that can fool state-of-the-art classifiers on natural images.
- Proposed an iterative algorithm to generate universal perturbations.
- Highlighted several properties of universal perturbations.
 - Image-agnostic
 - Network-agnostic
- Explained the existence of universal perturbations with the correlation between different regions of the decision boundary.
- Provided insights on the geometry of the decision boundaries of deep neural networks.

For

- This algorithm is able to generate a universal perturbation with a small sample of the data.
- Finding the subspace that allows the universal perturbation to be so effective.
- Finding geometric correlations between different parts of the decision boundary.
- The universal perturbation is image-agnostic and network-agnostic.

Against

- Used only a single dataset of natural images ImageNet for all experiments.
- The proposed method is expensive as it's iterative.
- Performed fine-tuning on just a single architecture VGG-F.
- Fine-tuning procedure helped improve the fooling rate to 76.2% only.
- Their hypothesis for dominant labels need to be investigated.

Thank You

