
Bridging the Domain Gap for Ground-to-Aerial Image Matching

Krishna Regmi and Mubarak Shah
Center for Research in Computer Vision, University of Central Florida

krishna.regmi7@gmail.com, shah@crcv.ucf.edu

Abstract

The visual entities in cross-view (e.g. ground and aerial)
images exhibit drastic domain changes due to the differ-
ences in viewpoints each set of images is captured from.
Existing state-of-the-art methods address the problem by
learning view-invariant images descriptors. We propose a
novel method for solving this task by exploiting the gener-
ative powers of conditional GANs to synthesize an aerial
representation of a ground-level panorama query and use it
to minimize the domain gap between the two views. The
synthesized image being from the same view as the ref-
erence (target) image, helps the network to preserve im-
portant cues in aerial images following our Joint Feature
Learning approach. We fuse the complementary features
from a synthesized aerial image with the original ground-
level panorama features to obtain a robust query represen-
tation. In addition, we employ multi-scale feature aggre-
gation in order to preserve image representations at dif-
ferent scales useful for solving this complex task. Experi-
mental results show that our proposed approach performs
significantly better than the state-of-the-art methods on the
challenging CVUSA dataset in terms of top-1 and top-1%
retrieval accuracies. Furthermore, we evaluate the gen-
eralization of the proposed method for urban landscapes
on our newly collected cross-view localization dataset with
geo-reference information.

1. Introduction
Estimating the geo-location of an image has been tackled

as an image-matching task, where the query image is com-
pared against a database of reference images with known
locations. Traditionally, the matching has been conducted
between images taken from the same view, primarily street-
view [14, 35, 44], which have a high degree of visual sim-
ilarity in terms of scene contents. Since these ground level
reference images are typically concentrated around urban
areas with more human accessibility, the applicability of the
method is limited to those regions. With the availability of
aerial images from Google maps, Bing maps, etc. that cover
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Figure 1: The ground panorama query and its edgemap are inputs
to the Generator (X-Fork [32]) network to synthesize aerial image
Ia′ and its segmentation map (shown in upper panel). We then
jointly learn the feature representations for image triads (Ig , Ia′
and Ia). The features fg for Ig and fa′ for Ia′ are fused, followed
by fully-connected operation to obtain a robust query representa-
tion fg∗ and is matched with the aerial feature representation fa∗

(shown in lower panel).

the earth surface densely, researchers have lately explored
the prospect of cross-view image matching [18, 24, 41],
where the query ground image is matched against aerial im-
ages. This comes with additional challenges due to vari-
ation in viewpoints between the ground and aerial images,
which capture the same scene differently in two views. This
motivates us to explore transforming the query street-view
image into aerial view, so that the transformed image has
scene representations similar to the images it is matched
against.

The recent success of Generative Adversarial Networks
(GANs) [12] in synthesizing realistic images from ran-
domly sampled noise vectors [30] or conditional variables
such as text [31, 47], images [19, 32], labels [28], etc. has
inspired us to frame the problem as viewpoint translation
followed by feature matching. Moreover, GANs have been
used for domain transfer problems as in [20, 48] to learn the
mapping between different domain representations. Recent
cross-view synthesis works by [32, 33, 9, 49] are successful



in transforming the images between aerial and street views.
In this paper, we address the following problem: given a
ground-level panorama retrieve matching aerial images. In
order to solve this problem, we take a next step to synthesize
aerial images from ground-level panorama and use them for
image retrieval.

The complexity of the cross-view image synthesis prob-
lem and its challenges are well-known. Thus, the syn-
thesized images cannot be relied on to completely replace
the query ground-level image to solve the matching task.
Therefore, we propose a framework as shown in Figure
1 to incorporate the synthesized image into the matching
pipeline as auxiliary information in order to bridge the ex-
isting domain gap between aerial and ground views. We
attempt to learn representations for aerial reference images
that are similar to their corresponding ground level im-
ages, as well as the synthesized aerial images. Since the
synthesized aerial images are transformed representations
of street-view (ground) images, we expect them to con-
tain representative features. By learning representations in
this manner, the synthesized aerial images force the net-
work to minimize the distance between feature representa-
tions of aerial images and street-view images. Additionally,
we hypothesize that some features of aerial images are bet-
ter learned by considering synthesized aerial images rather
than street-view images. Thus, the joint training of these
image triads (ground, synthesize aerial from ground, and
corresponding real aerial) will help the aerial stream re-
tain important cues that would have otherwise been lost in
cross-view training. We fuse the learned complementary
feature representations of synthesized images with query
image features to obtain a robust representation that we use
for our image matching task.

The features extracted at different layers of deep neu-
ral networks capture varying levels of semantic information
of the input image. For the image matching task, which
is considerably more challenging than a standard classifica-
tion problem, we exploit the inherent multi-scale pyramidal
structure of features at multiple layers of deep neural net-
works and aggregate them to obtain a better image repre-
sentation.

In summary, this paper makes the following contribu-
tions. We propose a novel approach to leverage aerial im-
ages synthesized using GANs to extract complementary
features for cross-view image matching. We incorporate
the edgemaps, in addition to semantic segmentation which
is typically used, together with the input images to im-
prove the cross-view synthesis by providing cues on ob-
ject shapes and boundaries to the network. The synthe-
sized images bridge the domain gap between cross-view
images. The joint training of image triads using auxil-
iary loss helps improve the network training. The pro-
posed feature fusion strategy demonstrates the capabilities

of GANs for constructive training and complementary fea-
ture learning. Lastly, we show that aggregating features
from multiple convolutional layers at different resolutions
greatly helps preserve coarse to fine latent representations
necessary for complex cross-view matching task. Our ex-
tensive experiments show that the proposed joint feature
learning method outperforms the state-of-the-art methods
on CVUSA dataset [46] and with feature fusion, we obtain
significant improvements on top-1 and top-10 retrieval ac-
curacies.

2. Related Works
2.1. Domain Transfer and GANs

GANs are very popular in domain transfer tasks. In the
works reported in [19, 48, 20, 42, 10], image mapping be-
tween two domains; source and target domains is learnt.
Augmented CycleGAN [2], StarGAN [7] have explored
many-to-many cross-domain mappings.

Cross-view relations have been explored in [46, 32, 11]
with more challenging settings of aerial and ground views,
where there is minimum semantic and viewpoint overlap
between the objects in the images. Cross-view image syn-
thesis between these contrasting domains has attracted wide
interests lately [32, 33, 9, 49] with the popularity of GANs;
these works have been successful in image translation be-
tween aerial and ground-level cropped (single camera) im-
ages. Zhai et al. [46] explored the possibility of synthesiz-
ing ground-level panorama from ground semantic layouts
wherein the layouts were predicted from the semantic maps
of the aerial images. Here, we directly transform the ground
level panorama to aerial view and use them for cross-view
image matching task.

2.2. Multi-scale Feature Aggregation

Features at different layers of deep neural networks are
essentially the multi-resolution features of the same image.
Abundance of literature has explored features at multiple
scales [17, 29, 34, 26, 22] for applications like key-point
detection, human pose estimation, semantic segmentation.
FPN [25], HyperNet [21], ION [5] explored multi-scale fea-
tures for object detection. Earlier, Hypercolumns [13] were
created from multi-layer features and used for object seg-
mentation and localization. Building upon this work, we
also aggregate the features at multiple scales to efficiently
obtain robust representation of the images.

2.3. Image Geolocalization

Image geolocalization has been tackled as an image
matching task [3, 15, 43] in computer vision community.
Early works in geolocalization [44, 38, 35, 45] matched im-
ages in the same view; a query street-view image is com-
pared against the reference street-view images using hand-
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crafted features. Hayset al. [14] proposed a data-driven
approach to estimate the distribution over geographical lo-
cation from a single image.

Cross-view matching has been explored by several re-
cent works [24, 36, 18, 40, 39] using both hand-crafted fea-
tures as well as deep networks. Bansalet al. [4] explored fa-
cade matching. Tianet al. [37] matched building features in
oblique views. Recent work by [18] exploit the NetVLAD
[3] to obtain view-invariant descriptors for cross-view pairs
and use them for matching.

In this work, we exploit the synthesized aerial images
as complementary source of information for better scene
understanding of street-view images to solve cross-view
matching task, rather than just learning view-invariant fea-
tures as in the previous approaches.

3. Method

We propose a novel method to bridge the domain gap be-
tween street-view and aerial images by leveraging the syn-
thesized aerial images using GANs. We learn the repre-
sentations of synthesized aerial images jointly with ground
and aerial image representations. Additionally, we fuse
the complementary representations of ground images with
the representations of their corresponding synthesized aerial
images to learn robust query representations of ground im-
ages. Also, we exploit the edgemaps of input images to pro-
vide GANs with the notion of object shapes and boundaries
and facilitate the cross-view image synthesis.

The organization of the rest of this section is as follows.
In the next subsection, we brie�y describe how GANs are
used for cross-view image synthesis, followed by joint fea-
ture learning, and �nally feature fusion is described.

3.1. Cross­View Image Synthesis

We adopt X-Fork generator architecture of [32] to train
the GAN for cross-view image synthesis. The X-Fork is a
multi-task learning architecture that synthesizes cross-view
image as well as semantic segmentation map. We make the
following modi�cations to the X-Fork architecture. Since
our input is panorama (rectangular in shape), the feature
maps at the bottleneck are also rectangular (1� 4). We re-
shape the features into squares (2� 2), and then apply mul-
tiple upconvolution operations to generate 512� 512 reso-
lution aerial images. Next, we exploit the edgemaps of input
images that outline the objects present in the images. We
employ Canny Edge Detection [6] to obtain the edgemaps
of the inputs. The edgemap is stacked together with the
panorama, along the channels to create a 4-channel input; 3
channels for RGB image and 1 channel for edgemap. The
output is an RGB image and its segmentation map in aerial
view. We utilize the synthesized aerial images in joint fea-
ture learning experiments.

(a) Joint Feature Learning: Inputs to this network areI g andI a

and outputs aref g andf a . Employing auxiliary loss betweenf a0

andf a helps to pull featuresf g andf a closer, and minimize the
domain gap between two features than when training two-stream
network on(I g ; I a ) pairs. The branch in the middle (dotted box
�lled with cyan) is used during the training only.

(b) Feature Fusion. Inputs to this network areI g andI a and out-
puts aref g � and f a � . f g and f a0 are concatenated and passed
through fully-connected layer (FC) to get their fused representa-
tion f g � . Similarly, f a is mapped tof a � , a representation closer
to f g � .

Figure 2:Architectures for our proposed approaches. The green
and blue triangles are encoders for ground and aerial images re-
spectively, with the network layer de�nition explained in subsec-
tion 4.2. The parameters for networks shown in shade of yellow
are frozen during the training.

3.2. Joint Feature Learning

We propose to learn the representations for image triads:
query ground panorama,I g, synthesized aerial image,I a0

from ground panorama and aerial imageI a jointly, so that
the synthesized aerial image representationsf a0 pushes the
image representationsf g andf a closer to each other.

The joint feature learning architecture is shown in Fig-
ure 2a. The encoder blocks are shown in green (for ground
image) and blue (for aerial images) triangles. Each encoder
consists of deep convolutional architecture as described in
subsection 4.2. We elegantly exploit the inherent multi-
scale pyramidal structure of features at multiple layers of
deep neural networks. We consider the features from the
�nal three convolutional layers, conv6, conv7 and conv8
layers. These features are aggregated and followed by a
fully connected layer to obtain the feature representation for
images in each view.

The encoders for aerial and street-view images do not
share the weights. Since the cross-view images are captured
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from different viewpoints, the visual entities exhibit drastic
domain changes. The two encoders operate on these sets of
diverse images, so it is understandable that the weight shar-
ing is not a good choice. On the other hand, the encoders
for I a0 andI a share the weights, since both images repre-
sent the aerial domain. This way, the aerial encoders learn
weights suitable for the synthesized imageI a0 as well as the
real imageI a . Thus,f a0 effectively forces the featuresf a

to be closer tof g and bridges the domain gap between the
two views. This is possible because the transformed image
I a0 captures representations ofI g which are easier for the
network to learn fromI a0 than it would be when learning
directly fromI g.

This strategy leverages the synthesized images at train-
ing time, but does not require them during the testing. The
auxiliary loss betweenI a0 andI a in�uences the aerial im-
age encoder to learn representations for aerial images by
considering the synthesized aerial image. We train our net-
work jointly on these image triads (I g, I a0 and I a) using
weighted soft-margin ranking loss [18], which is explained
next.

3.2.1 Weighted Soft-margin Triplet Loss

Consider a feature embeddingf g of ground-level im-
age,f a� pos of the corresponding matching aerial image and
a non-matching aerial image featuref a� neg . The triplet
loss [16] aims to bring the matching featuref a� pos closer
to f g while at the same time pushesf a� neg away. Here,
if dp is the Euclidean distance between positive samples
(f g, f a� pos ) and dn is the Euclidean distance between
negative/non-matching samples (f g, f a� neg ), we try to min-
imize dp as well as maximizedn . The triplet loss is ex-
pressed as shown below:

L triplet = max(0; m + dp � dn ); (1)

where,m is a margin that speci�es a minimum distance be-
tween non-matching pairs.

In order to avoid the necessity of explicitly deciding the
margin for triplet loss, soft-margin triplet loss is popular and
is expressed as given in Equation 2 below:

L sof t = ln(1 + ed); (2)

whered = dp � dn .
In our work, we use the weighted soft margin triplet loss

[18] as given in Equation 3:

L weighted = ln(1 + e�d ): (3)

We use� = 10, which results in better convergence than�
= 1.

We incorporate the auxiliary loss between the synthe-
sized aerial images,I 0

a , and the real aerial images,I a , along

with the loss between the real aerial,I a , and the ground
images,I g, for joint feature learning using the Equation 4
below:

L joint = � 1L weighted (I g; I a) + � 2L weighted (I a0; I a):
(4)

Here,� 1 and� 2 are balancing factors between the losses
for (I g, I a) and (I a0, I a) pairs respectively.

3.3. Feature Fusion

In the above method, the synthesized aerial image is used
during the training only, for bridging the domain gap be-
tween the real aerial and ground view images; but is ne-
glected during testing. Since the features of the synthe-
sized image contain complementary information that as-
sist in joint feature learning, we attempt to further exploit
them. We fuse the ground image featuresf g with synthe-
sized aerial image featuresf a0 and �nd a robust representa-
tion f g� for the query ground image.

The fusion architecture is shown in Figure 2b. We use
the trained joint feature learning network as feature ex-
tractor for our feature fusion task. We �rst concatenate
the features from ground query image with the features
from synthesized aerial image. The concatenated features
need to be re�ned to obtain a generalized representation
for query imagef g� . We achieve this by passing through
a fully-connected layer in the upper stream. The features
f a from the lower stream need to be optimized against the
re�ned features from upper fully-connected layer. So, we
add a fully-connected layer in the lower stream that learns
the generalized representations,f a � , for the aerial images.
During the testing, the fused feature representationf g� for
query imageI g is compared against the representationsf a �

for aerial images for image matching.

4. Experimental Setup

This section deals with the datasets we used and the ex-
perimental setups we followed in our work.

4.1. Datasets

We conduct experiments on CVUSA dataset [46] to
compare our work with existing methods. We also col-
lect a new dataset, OP dataset, from urban areas of Orlando
and Pittsburgh with geo-information. The other benchmark
dataset, GT-Crossview [39] doesn't contain the ground level
panorama, thus making it infeasible to synthesize mean-
ingful aerial image. Also, the GT-Crossview dataset has
aligned image pairs in training set, whereas unaligned im-
age pairs in test set with no direction information, so the
synthesized aerial images for test case will be randomly
oriented relative to aerial images in the reference database,
thus it is not possible to use this dataset in our framework.

4



Figure 3:Image retrieval examples on CVUSA dataset [46]. For each query ground-level panorama, the synthesized aerial image is shown
alongside, followed by the �ve closest aerial images retrieved by proposed Feature Fusion method. The correct matching (ground truth)
aerial images are shown in green boxes. Rows 5 and 6 show examples where the ground truth aerial images are retrieved at the second and
fourth positions respectively.

CVUSA: CVUSA is a benchmark dataset for cross-view
image matching with 35,532 satellite and ground-panorama
image pairs for training and 8,884 pairs for testing. Aerial
images are750� 750and ground-panorama are224� 1232
in resolutions. Sample images from this dataset are shown
in Figure 3.

Orlando-Pittsburgh (OP) dataset: We collect image
pairs from two US cities, Orlando and Pittsburgh with
ground-truth geo-locations. We call it Orlando-Pittsburgh
(OP) dataset. The dataset covers urban areas of the cities,
entirely different from the rural areas in CVUSA dataset.
Figure 6 shows some example images of this dataset. The
dataset contains 1,910 training and 722 testing pairs of
aerial and ground-panorama images. The resolutions are
640 � 640 for aerial images and416 � 832 for panora-
mas. Primary motivation to collect this dataset is to eval-
uate the generalization of the proposed methods in urban
locations and to compute matching accuracy in terms of dis-
tance (meters); and the unavailability of such datasets pub-
licly. Though small-scale, this dataset should be useful for
future research in this direction.

4.2. Implementation Details

We present the implementation details of our cross-view
synthesis network and the proposed image matching net-
works in this section.

Cross-View Synthesis network: The generator of cross-
view synthesis network, shown asGeneratorin Figures 1
and 2 has an encoder and two decoders, similar to the X-
Fork architecture in [32]. The input to the encoder is a 4-
channel image; 3-RGB channels and an edgemap, stacked
together. The decoders generate cross-view image and its
segmentation map, for a given input. The network consists
of blocks of Convolution, Batch Normalization and Leaky
ReLU layers. Convolutional kernels of size4 � 4 with a
stride of 2 are used that downsamples the feature maps af-
ter each convolution, and to upsample the feature maps af-
ter each upconvolution operation. We reshape the features
at bottleneck to adjust the feature shape and pass through
the decoders. The six blocks of decoders share the weights
whereas the �nal two blocks don't. The discriminator net-
work has similar architecture to the one used in [32]. We
train the GAN end-to-end using Torch [8] implementation.
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