CAP6412

- **Instructor**: Dr. Yogesh Singh Rawat
- **Email**: yogesh@crcv.ucf.edu
- **Office**: HEC 241
- **Phone**: 4078236495
- **Time**: Tuesdays and Thursdays 3:00 to 4:15PM
- **Location**: HEC 103
- **Office Hours**: Wednesday and Thursday 2:00 PM to 3:00 PM and by appointment
- **Extra Discussion Session**: Wednesdays 4:30 to 5:30, HEC 356
- **Pre-requisite**: CAP5415
Email: the best way to contact me

• Put [CAP6412] in subject line
• Summarize message in subject line
• Example:
 • [CAP6412] Meeting request: Thursday (Jan 14) 4:30pm?
Agenda for today

• Course overview
• Introduction to deep learning
Course objectives

First objective

• Get familiar with computer vision research
• Understand state-of-the-art methods
• Familiar with computer vision datasets
• Understand evaluation methods and metrics
• Improve critical analysis capabilities
How to read research papers?

• Ask questions before you start
 • What is the motivation?
 • What is the problem?
 • What is the solution?
 • What experiments are done?
 • How is the solution evaluated?

• What are the contributions?
• Future direction?
• Relation with existing works?
How to read research papers?

• A one-time reading is not going to work
 • Multiple iterations
4+ step process

• Step 1:
 • Read the title
 • Scan all the sections

• Outcome
 • It will give you an idea what the paper is about
4+ step process

• Step 2:
 • Read the abstract
 • Scan all the sections again
 • Look for figures about the method
 • Read the conclusion

• Outcome
 • It will give you an idea about
 • The problem being solved
 • A bit about the approach
4+ step process

• Step 3:
 • Read the abstract again
 • Read the introduction
 • Read the overview of the approach
 • Try to understand the method from the main figure
 • Look for the results which are shown

• Outcome
 • Better understanding of the problem
 • More insights into the solution
 • Evaluation
4+ step process

• Step 4:
 • Read method very carefully
 • You can skip alien words
 • Try to understand as much as you can
 • Go through the evaluation carefully

• Outcome
 • You should have a better understanding of the paper now

• If you didn’t understand some part of the paper
 • Now is the time to look into it
How to read research papers?

• How to read research papers by Dr. Mubarak Shah:
 http://crcv.ucf.edu/people/faculty/HowToRead.html

• The three-pass approach by Dr. Srinivasan Keshav:
Course objectives

Second objective
 • How to review a research paper?
How to review research papers?

• Strengths of the paper
 • Novelty
 • Technical correctness
 • Clarity
 • Evaluation
How to review research papers?

• Strengths of the paper
• Weakness of the paper
 • Lack of novelty
 • Technically incorrect
 • Lack of clarity
 • Insufficient evaluation
How to review research papers?

• Strengths of the paper
• Weakness of the paper
• Justification of your evaluation

• Next steps
 • Future direction
 • Another solution
 • Extend the idea
 • Open problem
 • Apply to other problems
Course objectives

Third objective

• How to present a research paper?
How to present research papers?

• Make good presentations
• Duration: 30 minutes
• Know your audience
 • Assume no one has read the paper before
How to present research papers?

• Motivation
• Problem description
• Focus on main contributions
• Proposed solution
• Experiments
• Comparisons with state-of-the-art
• Conclusion

• More discussion on this in one-on-one meetings
Student Learning Outcomes

• Read and understand a research paper.
• Write a comprehensive review of the paper.
• Present a research paper.
• To come up with own ideas to solve the same problem
 • Which may lead to your first research paper.
• To implement known methods or own novel ideas.
Grading Policy

• Reports 20%
• Presentation 20%
• Attendance and Discussion 20%
• Projects/Programs 40%
 • (Keras, PyTorch, TensorFlow,..)

• Late Policy
 • 0 for late reports
 • Projects/Programs
 • 20% off per day
 • up to 4 days
GPUs

• UCF HPC
• Linux
• Each student will get an account
• There will be presentation about how to use the system:
 • Wed January 16, 3:00PM, HEC 101-B
Papers/ Reports

- We will discuss one paper in each class
- You can select the paper you want to present from the list on course webpage or
 - Suggest any other paper you want to present with my approval
- All students will read the assigned paper before the class and write a report
- Reports will be due just before the class meeting through Web Courses
- One student will be responsible for presenting the paper
- Each presentation will be of maximum 30 minutes
- Schedule Table
Reports (one page maximum)

• Summary
• Good points
• Weak points
• Questions
• Ideas

• Format: https://www.overleaf.com/read/cbrvnkmbbyd
• Name: [student id]_[last name].pdf (abcdefgh_rawat.pdf)
Reports- BONUS

• 20% extra marks if
 • Provide results/insights by running the available code
Paper presentation review/Rehearsal Schedule

• Review of power point presentation:
 • For Thursday presentation
 • Review Monday 2:40PM/HEC 450
 • Rehearsal Tuesday 2:00 PM/HEC 356
 • For Tuesday presentation
 • Review Thursday a week before during office hours: 2:00 PM/HEC 241
 • Rehearsal Monday 2:00PM/HEC 450
Projects

• Three projects
 • Assignment 1 – A basic CNN implementation
 • Assignment 2 – Implement one of the paper
 • Will be announced later
 • Assignment 3 – Extend the idea from one of the paper
 • Will be announced later

• All project will require
 • Code submission
No final exam

• Only presentations from final project
 • 5 minutes spotlight presentations
Statement of Academic Integrity

• The UCF Golden Rule (http://goldenrule.sdes.ucf.edu/) will be observed in the class. Plagiarism and Cheating of any kind on an examination, quiz, or assignment will result at least in an "F" for that assignment (and may, depending on the severity of the case, lead to an "F" for the entire course) and may be subject to appropriate referral to the Office of Student Conduct for further action. I will assume for this course that you will adhere to the academic creed of this University and will maintain the highest standards of academic integrity. In other words, don't cheat by giving answers to others or taking them from anyone else. I will also adhere to the highest standards of academic integrity, so please do not ask me to change (or expect me to change) your grade illegitimately or to bend or break rules for one person that will not apply to everyone.
Course overview

• Topics we will cover:
 • Semi-supervised learning
 • Unsupervised learning
 • Self-supervised learning
 • Adversarial learning
 • Meta learning
 • Capsule networks

• Problems we will study:
 • Activity recognition
 • Image/video synthesis
 • Image/video segmentation
 • Data imbalance
 • Noisy data
Text Book

There is no text book for this class. We will discuss recent research papers.

Recommended supplemental textbook:
 • Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. (free electronic version)
UCF Resources

• **Tutorial on Keras**: Kishan Athrey

• **Deep Learning Introduction**: Rawat/Shah youtube: UCF CRCV: Deep Learning)

• **CAP6412 Spring 2018**
Recommended online courses and tutorials

• https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2_u4xOEky0
 Andrew Ng
• http://cs231n.stanford.edu/CS231n: Convolutional Neural Networks for Visual Recognition
• http://web.stanford.edu/class/cs224n/CS224n: Natural Language Processing with Deep Learning
• http://rll.berkeley.edu/deeprlcourse/CS 294: Deep Reinforcement Learning
• http://distill.pub/ Very nice explanations of some DL concepts
• https://class.coursera.org/ml003/lecture/preview
• https://media.nips.cc/Conferences/2016/Slides/6203-Slides.pdf
• https://media.nips.cc/Conferences/2016/Slides/6198-Slides.pdf
• https://github.com/adeshpande3?tab=repositories
Deep Learning Has Been Disruptive

• Very Different Paradigm
• Excellent results
• Rapid Progress
• Computer Vision is impacting other areas
Deep Learning Has Been Disruptive

Dramatic Increase in Number of
 Publications
 Attendance in Conferences
 Datasets
 Startups
 Academics moving to Industry
Software platforms/libraries
 Pytorch, Keras, Tensor Flow, Chainer, ..
GPUs
Tutorials, videos, online courses
Computer Vision Conferences and Journals

• Conferences
 • International Conference on Computer Vision (ICCV)
 • Computer Vision and Pattern Recognition (CVPR)
 • European Conference on Computer Vision (ECCV)

• Review process
 • Submission, double-blind review, rebuttal, decision
 • More noisy reviews
 • Publication in about 5-6 months
Computer Vision Conferences and Journals

• Journals
 • IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
 • International Journal of Computer Vision (IJCV)
 • Computer Visio and Image Understanding (CVIU)

• Review
 • Submission, single-blind review, response, review, response,, decision
 • Less noise
 • Publication in > 1 year
Machine Learning Conferences

• Neural Information Processing Systems (NIPS)
• International Conference on Machine Learning (ICML)
• International Conference on Learning Representations (ICLR)
NeurIPS 2018 Tickets

Sold Out in Less Than 12 Minutes

Faster than this year’s Burning Man, but still not as fast as a Beyonce concert! Maybe next year.
CVPR Attendance Trend
CVPR Submitted and Accepted Papers

56% yearly growth with 26% acceleration → 10.8B submitted papers in 2028
Thank you!

Questions?