Gabriella
MEVA System
University of Central Florida (UCF)
Problem

Untrimmed security videos
 • Detect activities
 • Human and vehicles
 • Indoor and outdoor
 • Types
 • Single actors
 • Interaction between actors
 • Actor-object interactions
 • Spatio-temporal localization
 • Start/end
 • Spatial extent
Challenges

- Untrimmed nature
- Multiple activities
- Varying length of activities
- Multiple actors
- Interactions
 - Actor-object
 - Actor-actor
Challenges

- Untrimmed nature
- Multiple activities
- Varying length of activities
- Multiple actors
- Interactions
 - Actor-object
 - Actor-actor
- Multiple scales
 - Tiny activities
Challenges

- Untrimmed nature
- Multiple activities
- Varying length of activities
- Multiple actors
- Interactions
 - Actor-object
 - Actor-actor
- Multiple scales
 - Tiny activities
- Unbalanced dataset
Challenges

- Untrimmed nature
- Multiple activities
- Varying length of activities
- Multiple actors
- Interactions
 - Actor-object
 - Actor-actor
- Multiple scales
 - Tiny activities
- Unbalanced dataset
 - Sparse activities
Motivations

• Region proposal based approach [1, 2]
 • Scaling issue with videos
 • Multiple actors
 • How to pair?

• Object detection [3]
 • Time consuming
 • Multiple actors
 • How to pair?

Approach

• A two-stage process
 • Detect activity tubelets from long untrimmed videos
 • Recognize activities in the detected tubelets

• Encoder-decoder architecture
 • No region proposal

• Video level detection
 • No object detection

• RGB video
 • No optical flow
Architecture
Architecture
Architecture
Foreground scale imbalance

• Dice loss
 • Imbalanced pixel-wise classification
 • Focuses on ratio of foreground to background regions.
Patch-Dice loss

Generalized Dice Loss:

\[\mathcal{L}_{GD} = 1 - \frac{2 \sum_{i=1}^{N} p_i \hat{p}_i}{\sum_{i=1}^{N} p_i^2 + \sum_{i=1}^{N} \hat{p}_i^2 + \epsilon} \]

Patch-Dice Loss:

\[\mathcal{L}_{PDL} = \sum_{k=1}^{K} \left(1 - \frac{2 \sum_{i=1}^{M} p_{ki} \hat{p}_{ki}}{\sum_{i=1}^{M} p_{ki}^2 + \sum_{i=1}^{M} \hat{p}_{ki}^2 + \epsilon} \right) \]

- N is the total number of pixels in the frame.
- K is the total number of patches.
- M is the total number of pixels in a patch.
Multiscale Patch-Dice Loss

\[\mathcal{L}_{MPDL} = \lambda_1 \mathcal{L}_{PDL}(3 \times 3) + \lambda_2 \mathcal{L}_{PDL}(5 \times 5) + \lambda_3 \mathcal{L}_{PDL}(7 \times 7) \]

- (3 x 3), (5 x 5), (7 x 7) are the patch sizes.
Architecture
Sample activity tubelets
Sample activity tubelets
Architecture
Architecture
Architecture
Architecture
Architecture
Real-time system

- **Main process**
 - Manages the GPU threads
 - Perform task distribution.
Task Distribution

- Main process
- Initialize models
- Distributes videos into GPU threads
- Each GPU has a copy of all the models
Frame Reader

• Reads frame into memory
 • Without extraction

• Failsafe system
 • Two readers for codec problems.
 • FFMPEG reader
 • OpenCV reader
Pre-Processing

• Pre-processing is very slow on CPU
 • Bottleneck: resize operation
• Transferring frames to GPU
 • memory intensive
• **Solution:** 3-stage buffering mechanism for GPU
 • High resolution frame buffer
 • Low resolution frame buffer for localization network
 • Tube proposal buffer for action classifier
Buffering

HR Buffer

Resize

LR Buffer

Crop

Tube Coordinates

Localization Network

Tube Buffer

Action Classifier

GPU Thread

Frame Reader

Pre-Processing

Buffering

Pipeline-Models

Post-Processing
Evaluation

• Speed
 • ~100 frames per second

• Performance
 • Best performing system on the leaderboard
 • NIST will present
Sample detections

- *person_talks_to_person*
- *vehicle_turns_left*
- *vehicle_reverses*
Sample detections

vehicle_turns_right
Limitations

• Two stages
 • Need of connected components
 • Can we merge these two stages?

• Close by multiple instances
 • Single action tube
 • Instance separation
References

Acknowledgement

• Source of annotations
 • University of Maryland (UMD)
 • Professor Rama Chellappa and group
 • Carnegie Mellon University (CMU)
 • Professor Alexander Hauptmann and group
 • Kitware
 • IBM

• Evaluation
 • NIST – Jonathan Fiscus and team

• Funding - IARPA
Thank You!

Q & A