ICCV Workshop on Action Recognition with a Large Number of Classes

THUMOS'13 Action Recognition Challenge Results:


Overall Ranking:

Rank Submission Overall Accuracy Split 1 Acc. Split 2 Acc. Split 3 Acc.
1 ID39_INRIA 85.900% 84.734% 85.862% 87.105%
2 ID40_Florence 85.708% 85.319% 86.642% 85.164%
3 ID35_Canberra 85.437% 84.761% 86.367% 85.183%
4 ID38_CAS_SIAT 84.164% 83.515% 84.607% 84.368%
5 ID25_Nanjing 83.979% 83.111% 84.597% 84.229%
6 ID34_UCF_BoyrazTappen 82.829% 82.640% 83.352% 82.496%
7 ID36_UCSD_MSRA_SJTU 80.895% 79.410% 81.251% 82.025%
8 ID28_USC 77.360% 76.154% 77.704% 78.222%
9 ID31_NII 73.389% 71.102% 73.671% 75.393%
10 ID44-UNITN 70.504% 70.446% 69.797% 71.270%
11 ID42-UEC 66.261% 65.157% 66.726% 66.899%
12 ID26_UMD 65.948% 65.218% 65.385% 67.240%
13 ID47_UNAL 65.675% 65.313% 65.480% 66.231%
14 ID32_Buffalo 64.296% 63.405% 65.365% 64.118%
15 ID29_TNO 63.457% 62.007% 63.461% 64.904%
16 ID37_ECNU 54.738% 54.764% 55.162% 54.287%


Results of individual runs:

Rank Submission Overall Accuracy Split 1 Acc. Split 2 Acc. Split 3 Acc.
1 ID39_INRIA 85.900% 84.734% 85.862% 87.105%
2 ID40_Florence_Run4 85.708% 85.319% 86.642% 85.164%
3 ID35_Canberra 85.437% 84.761% 86.367% 85.183%
4 ID40_Florence_Run3 84.442% 83.703% 85.556% 84.066%
5 ID38_CAS_SIAT 84.164% 83.515% 84.607% 84.368%
6 ID25_Nanjing_Run2 83.979% 83.111% 84.597% 84.229%
7 ID25_Nanjing_Run1 83.390% 82.261% 83.896% 84.012%
8 ID34_UCF_BoyrazTappen_Run3 82.829% 82.640% 83.352% 82.496%
9 ID40_Florence_Run2 82.455% 81.468% 83.013% 82.883%
10 ID36_UCSD_MSRA_SJTU 80.895% 79.410% 81.251% 82.025%
11 ID34_UCF_BoyrazTappen_Run2 78.522% 78.428% 78.328% 78.809%
12 ID34_UCF_BoyrazTappen_Run1 77.902% 77.619% 77.630% 78.457%
13 ID28_USC 77.360% 76.154% 77.704% 78.222%
14 ID40_Florence_Run1 74.595% 72.853% 74.963% 75.969%
15 ID31_NII 73.389% 71.102% 73.671% 75.393%
16 ID44_UNITN 70.504% 70.446% 69.797% 71.270%
17 ID42_UEC 66.261% 65.157% 66.726% 66.899%
18 ID26_UMD_Run2 65.948% 65.218% 65.385% 67.240%
19 ID26_UMD_Run1 65.804% 64.979% 65.730% 66.704%
20 ID47_UNAL_Run1 65.675% 65.313% 65.480% 66.231%
21 ID32_Buffalo_Run2 64.296% 63.405% 65.365% 64.118%
22 ID29_TNO 63.457% 62.007% 63.461% 64.904%
23 ID37_ECNU 54.738% 54.764% 55.162% 54.287%
24 ID32_Buffalo_Run1 45.606% 44.677% 45.480% 46.662%
25 ID47_UNAL_Run2 1.109% 1.219% 0.891% 1.217%


**Detailed results and statistics available here: PPT File.**

Notebook papers of the submissions:


Submission ID21_UOttawa:
LPM for Fast Action Recognition with Large Number of Classes, Feng Shi, Robert Laganiere, Emil Petriu and Haiyu Zhen.
Confusion Tables: [ Run1 , Run2, Run3 , Run4 , Run5]

Submission ID25_Nanjing:
Towards Good Practices for Action Video Encoding , Jianxin Wu.
Confusion Tables: [ Run1 , Run2]

Submission ID26_UMD:
Evaluation of LC-KSVD on UCF101 Action Dataset , Hyunjong Cho, Hyungtae Lee, and Zhuolin Jiang.
Confusion Tables: [ Run1 , Run2]

Submission ID28_USC:
USC Action Recognition System with a Large Number of Classes, Chen Sun and Ram Nevatia.
Confusion Table: [ Run1]

Submission ID29_TNO:
Action Recognition by Layout, Selective Sampling and Soft-Assignment , G.J. Burghouts, P. Eendebak, H. Bouma and R.J-M. ten Hove.
Confusion Table: [ Run1]

Submission ID31_NII:
NII, Japan at the first THUMOSWorkshop 2013 , Sang Phan, Duy-Dinh Le and Shin'ichi Satoh.
Confusion Table: [ Run1]

Submission ID32_Buffalo:
Action Bank for Large-Scale Action Classification, Wei Chen, Ran Xu, Jason J. Corso.
Confusion Tables: [ Run1 , Run2]

Submission ID34_UCF_BoyrazTappen:
Weakly-Supervised Action Recognition, Hakan Boyraz, Syed Masood, Baoyuan Liu, Marshall Tappen
Confusion Tables: [ Run1, Run2, Run3, ]

Submission ID35_Canberra:
Combined Ordered and Improved Trajectories for Large Scale Human Action Recognition, O. V. Ramana Murthy and Roland Goecke.
Confusion Table: [ Run1]

Submission ID36_UCSD_MSRA_SJTU:
A Two-Layer Representation For Large-Scale Action Recognition, Jun Zhu1, Baoyuan Wang, Xiaokang Yang, Wenjun Zhang, and Zhuowen Tu.
Confusion Table: [ Run1]

Submission ID37_ECNU:
Experimenting Motion Relativity for Action Recognition with a Large Number of Classes, Feng Wang, Xiaoyan Li, and Wenmin Shu.
Confusion Table: [ Run1]

Submission ID38_CAS_SIAT:
Hybrid Super Vector with Improved Dense Trajectories for Action Recognition, Xiaojiang Peng, LiMin Wang, Zhuowei Cai, Yu Qiao, and Qiang Peng.
Confusion Table: [ Run1]

Submission ID39_INRIA:
LEAR-INRIA submission for the THUMOS workshop, Heng Wang and Cordelia Schmid.
Confusion Table: [ Run1]

Submission ID40_Florence:
L1-regularized Logistic Regression Stacking and Transductive CRF Smoothing for Action Recognition in Video, Svebor Karaman, Lorenzo Seidenari, Andrew D. Bagdanov, Alberto Del Bimbo.
Confusion Tables: [ Run1, Run2, Run3, Run4]

Submission ID42_UEC:
Fusion of Dense SURF Triangulation Features and Dense Trajectory based Features, Do Hang Nga, Yoshiyuki Kawano, and Keiji Yanai.
Confusion Table: [ Run1]

Submission ID44_UNITN:
Action Recognition Using Accelerated Local Descriptors and Temporal Variation, Negar Rostamzadeh, Jasper Uijlings and Nicu Sebe.
Confusion Table: [ Run1]

Submission ID47_UNAL:
MindLAB at the THUMOS Challeng, Fabian Paez, Jorge A. Vanegas, and Fabio A. Gonzalez.
Confusion Tables: [ Run1 , Run2]

Submission ID47_UNAL:
MindLAB at the THUMOS Challeng, Fabian Paez, Jorge A. Vanegas, and Fabio A. Gonzalez.
Confusion Tables: [ Run1 , Run2]

Submission ID20:
Ordered Trajectories for Large Scale Human Action Recognition, O. V. Ramana Murthy, and Roland Goecke.

Submission ID22:
A Spatio-Temporal Feature based on Triangulation of Dense SURF, Do Hang Nga, and Keiji Yanai.

Workshop Organization

General Chairs:

Ivan Laptev, INRIA
Massimo Piccardi, Univ. of Tech., Sydney
Mubarak Shah, UCF
Rahul Sukthankar, Google Research

Program Chairs:

Yu-Gang Jiang, Fudan University
Jingen Liu, SRI International
Amir Roshan Zamir, UCF

All names ordered alphabetically.

keynote speakers

Jason J. Corso, SUNY at Buffalo, USA
Tal Hassner, Open University, ISrael
Silvio Savarese, Stanford, USA
Cordelia Schmid, INRIA, France
Stan Sclaroff, Boston University, USA
Jianxin Wu, NJU, China

program committee

Saad Ali, SRI International, USA
Marco Bertini, University of Florence, Italy
Cigdem Beyan, University of Edinburgh, UK
Francois Bremond, INRIA, France
Liangliang Cao, IBM T. J. Watson, USA
Jason J. Corso, SUNY at Buffalo, USA
Riad Hammoud, BAE Systems, USA
nazli ikizler-cinbis, Hacettepe Univ., Turkey
Quoc V. Le, Stanford University, USA
Zicheng Liu, MSR, USA
Jiebo Luo, University of Rochester, USA
Greg Mori, SFU, Canada
Ronald Poppe, Univ. of Twente, Netherlands
Michalis Raptis, UCLA, USA
Michael S. Ryoo, NASA JPL, USA
Shin'ichi Satoh, NII, Japan
Silvio Savarese, Stanford, USA
Stan Sclaroff, Boston University, USA
Cees Snoek,Univ. of Amsterdam,Netherlands
Sinisa Todorovic, Oregon State Univ., USA
Yang Wang, University of Manitoba, Canada
Jianxin Wu, NJU, China
Lexing Xie, ANU, Australia
Shuicheng Yan, NUS, Singapore
Alper Yilmaz, OSU, USA
Junsong Yuan, NTU, Singapore
Lihi Zelnik-Manor, Technion, Israel

Data Collection

Khurram Soomro, UCF

sponsors


ICCV International Workshop on Action Recognition with a Large Number of Classes, Sydney, Australia, 2013